/* * This file is part of the coreboot project. * * Copyright (C) 2003-2004 Eric Biederman * Copyright (C) 2005-2009 coresystems GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include static struct lb_header *lb_table_init(unsigned long addr) { struct lb_header *header; /* 16 byte align the address */ addr += 15; addr &= ~15; header = (void *)addr; header->signature[0] = 'L'; header->signature[1] = 'B'; header->signature[2] = 'I'; header->signature[3] = 'O'; header->header_bytes = sizeof(*header); header->header_checksum = 0; header->table_bytes = 0; header->table_checksum = 0; header->table_entries = 0; return header; } static struct lb_record *lb_first_record(struct lb_header *header) { struct lb_record *rec; rec = (void *)(((char *)header) + sizeof(*header)); return rec; } static struct lb_record *lb_last_record(struct lb_header *header) { struct lb_record *rec; rec = (void *)(((char *)header) + sizeof(*header) + header->table_bytes); return rec; } #if 0 static struct lb_record *lb_next_record(struct lb_record *rec) { rec = (void *)(((char *)rec) + rec->size); return rec; } #endif static struct lb_record *lb_new_record(struct lb_header *header) { struct lb_record *rec; rec = lb_last_record(header); if (header->table_entries) { header->table_bytes += rec->size; } rec = lb_last_record(header); header->table_entries++; rec->tag = LB_TAG_UNUSED; rec->size = sizeof(*rec); return rec; } static struct lb_memory *lb_memory(struct lb_header *header) { struct lb_record *rec; struct lb_memory *mem; rec = lb_new_record(header); mem = (struct lb_memory *)rec; mem->tag = LB_TAG_MEMORY; mem->size = sizeof(*mem); return mem; } static struct lb_serial *lb_serial(struct lb_header *header) { #if CONFIG_CONSOLE_SERIAL8250 struct lb_record *rec; struct lb_serial *serial; rec = lb_new_record(header); serial = (struct lb_serial *)rec; serial->tag = LB_TAG_SERIAL; serial->size = sizeof(*serial); serial->ioport = CONFIG_TTYS0_BASE; serial->baud = CONFIG_TTYS0_BAUD; return serial; #else return header; #endif } static void add_console(struct lb_header *header, u16 consoletype) { struct lb_console *console; console = (struct lb_console *)lb_new_record(header); console->tag = LB_TAG_CONSOLE; console->size = sizeof(*console); console->type = consoletype; } static void lb_console(struct lb_header *header) { #if CONFIG_CONSOLE_SERIAL8250 add_console(header, LB_TAG_CONSOLE_SERIAL8250); #endif #if CONFIG_CONSOLE_VGA add_console(header, LB_TAG_CONSOLE_VGA); #endif #if CONFIG_CONSOLE_BTEXT add_console(header, LB_TAG_CONSOLE_BTEXT); #endif #if CONFIG_CONSOLE_LOGBUF add_console(header, LB_TAG_CONSOLE_LOGBUF); #endif #if CONFIG_CONSOLE_SROM add_console(header, LB_TAG_CONSOLE_SROM); #endif #if CONFIG_USBDEBUG_DIRECT add_console(header, LB_TAG_CONSOLE_EHCI); #endif } static void lb_framebuffer(struct lb_header *header) { #if defined(CONFIG_BOOTSPLASH) && CONFIG_BOOTSPLASH && CONFIG_COREBOOT_KEEP_FRAMEBUFFER void fill_lb_framebuffer(struct lb_framebuffer *framebuffer); struct lb_framebuffer *framebuffer; framebuffer = (struct lb_framebuffer *)lb_new_record(header); framebuffer->tag = LB_TAG_FRAMEBUFFER; framebuffer->size = sizeof(*framebuffer); fill_lb_framebuffer(framebuffer); #endif } static struct lb_mainboard *lb_mainboard(struct lb_header *header) { struct lb_record *rec; struct lb_mainboard *mainboard; rec = lb_new_record(header); mainboard = (struct lb_mainboard *)rec; mainboard->tag = LB_TAG_MAINBOARD; mainboard->size = (sizeof(*mainboard) + strlen(mainboard_vendor) + 1 + strlen(mainboard_part_number) + 1 + 3) & ~3; mainboard->vendor_idx = 0; mainboard->part_number_idx = strlen(mainboard_vendor) + 1; memcpy(mainboard->strings + mainboard->vendor_idx, mainboard_vendor, strlen(mainboard_vendor) + 1); memcpy(mainboard->strings + mainboard->part_number_idx, mainboard_part_number, strlen(mainboard_part_number) + 1); return mainboard; } #if (CONFIG_HAVE_OPTION_TABLE == 1) static struct cmos_checksum *lb_cmos_checksum(struct lb_header *header) { struct lb_record *rec; struct cmos_checksum *cmos_checksum; rec = lb_new_record(header); cmos_checksum = (struct cmos_checksum *)rec; cmos_checksum->tag = LB_TAG_OPTION_CHECKSUM; cmos_checksum->size = (sizeof(*cmos_checksum)); cmos_checksum->range_start = CONFIG_LB_CKS_RANGE_START * 8; cmos_checksum->range_end = ( CONFIG_LB_CKS_RANGE_END * 8 ) + 7; cmos_checksum->location = CONFIG_LB_CKS_LOC * 8; cmos_checksum->type = CHECKSUM_PCBIOS; return cmos_checksum; } #endif static void lb_strings(struct lb_header *header) { static const struct { uint32_t tag; const char *string; } strings[] = { { LB_TAG_VERSION, coreboot_version, }, { LB_TAG_EXTRA_VERSION, coreboot_extra_version, }, { LB_TAG_BUILD, coreboot_build, }, { LB_TAG_COMPILE_TIME, coreboot_compile_time, }, { LB_TAG_COMPILE_BY, coreboot_compile_by, }, { LB_TAG_COMPILE_HOST, coreboot_compile_host, }, { LB_TAG_COMPILE_DOMAIN, coreboot_compile_domain, }, { LB_TAG_COMPILER, coreboot_compiler, }, { LB_TAG_LINKER, coreboot_linker, }, { LB_TAG_ASSEMBLER, coreboot_assembler, }, }; unsigned int i; for(i = 0; i < ARRAY_SIZE(strings); i++) { struct lb_string *rec; size_t len; rec = (struct lb_string *)lb_new_record(header); len = strlen(strings[i].string); rec->tag = strings[i].tag; rec->size = (sizeof(*rec) + len + 1 + 3) & ~3; memcpy(rec->string, strings[i].string, len+1); } } #if CONFIG_WRITE_HIGH_TABLES == 1 static struct lb_forward *lb_forward(struct lb_header *header, struct lb_header *next_header) { struct lb_record *rec; struct lb_forward *forward; rec = lb_new_record(header); forward = (struct lb_forward *)rec; forward->tag = LB_TAG_FORWARD; forward->size = sizeof(*forward); forward->forward = (uint64_t)(unsigned long)next_header; return forward; } #endif void lb_memory_range(struct lb_memory *mem, uint32_t type, uint64_t start, uint64_t size) { int entries; entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]); mem->map[entries].start = pack_lb64(start); mem->map[entries].size = pack_lb64(size); mem->map[entries].type = type; mem->size += sizeof(mem->map[0]); } static void lb_reserve_table_memory(struct lb_header *head) { struct lb_record *last_rec; struct lb_memory *mem; uint64_t start; uint64_t end; int i, entries; last_rec = lb_last_record(head); mem = get_lb_mem(); start = (unsigned long)head; end = (unsigned long)last_rec; entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]); /* Resize the right two memory areas so this table is in * a reserved area of memory. Everything has been carefully * setup so that is all we need to do. */ for(i = 0; i < entries; i++ ) { uint64_t map_start = unpack_lb64(mem->map[i].start); uint64_t map_end = map_start + unpack_lb64(mem->map[i].size); /* Does this area need to be expanded? */ if (map_end == start) { mem->map[i].size = pack_lb64(end - map_start); } /* Does this area need to be contracted? */ else if (map_start == start) { mem->map[i].start = pack_lb64(end); mem->map[i].size = pack_lb64(map_end - end); } } } static unsigned long lb_table_fini(struct lb_header *head, int fixup) { struct lb_record *rec, *first_rec; rec = lb_last_record(head); if (head->table_entries) { head->table_bytes += rec->size; } if (fixup) lb_reserve_table_memory(head); first_rec = lb_first_record(head); head->table_checksum = compute_ip_checksum(first_rec, head->table_bytes); head->header_checksum = 0; head->header_checksum = compute_ip_checksum(head, sizeof(*head)); printk_debug("Wrote coreboot table at: %p - %p checksum %x\n", head, rec, head->table_checksum); return (unsigned long)rec; } static void lb_cleanup_memory_ranges(struct lb_memory *mem) { int entries; int i, j; entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]); /* Sort the lb memory ranges */ for(i = 0; i < entries; i++) { uint64_t entry_start = unpack_lb64(mem->map[i].start); for(j = i; j < entries; j++) { uint64_t temp_start = unpack_lb64(mem->map[j].start); if (temp_start < entry_start) { struct lb_memory_range tmp; tmp = mem->map[i]; mem->map[i] = mem->map[j]; mem->map[j] = tmp; } } } /* Merge adjacent entries */ for(i = 0; (i + 1) < entries; i++) { uint64_t start, end, nstart, nend; if (mem->map[i].type != mem->map[i + 1].type) { continue; } start = unpack_lb64(mem->map[i].start); end = start + unpack_lb64(mem->map[i].size); nstart = unpack_lb64(mem->map[i + 1].start); nend = nstart + unpack_lb64(mem->map[i + 1].size); if ((start <= nstart) && (end > nstart)) { if (start > nstart) { start = nstart; } if (end < nend) { end = nend; } /* Record the new region size */ mem->map[i].start = pack_lb64(start); mem->map[i].size = pack_lb64(end - start); /* Delete the entry I have merged with */ memmove(&mem->map[i + 1], &mem->map[i + 2], ((entries - i - 2) * sizeof(mem->map[0]))); mem->size -= sizeof(mem->map[0]); entries -= 1; /* See if I can merge with the next entry as well */ i -= 1; } } } static void lb_remove_memory_range(struct lb_memory *mem, uint64_t start, uint64_t size) { uint64_t end; int entries; int i; end = start + size; entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]); /* Remove a reserved area from the memory map */ for(i = 0; i < entries; i++) { uint64_t map_start = unpack_lb64(mem->map[i].start); uint64_t map_end = map_start + unpack_lb64(mem->map[i].size); if ((start <= map_start) && (end >= map_end)) { /* Remove the completely covered range */ memmove(&mem->map[i], &mem->map[i + 1], ((entries - i - 1) * sizeof(mem->map[0]))); mem->size -= sizeof(mem->map[0]); entries -= 1; /* Since the index will disappear revisit what will appear here */ i -= 1; } else if ((start > map_start) && (end < map_end)) { /* Split the memory range */ memmove(&mem->map[i + 1], &mem->map[i], ((entries - i) * sizeof(mem->map[0]))); mem->size += sizeof(mem->map[0]); entries += 1; /* Update the first map entry */ mem->map[i].size = pack_lb64(start - map_start); /* Update the second map entry */ mem->map[i + 1].start = pack_lb64(end); mem->map[i + 1].size = pack_lb64(map_end - end); /* Don't bother with this map entry again */ i += 1; } else if ((start <= map_start) && (end > map_start)) { /* Shrink the start of the memory range */ mem->map[i].start = pack_lb64(end); mem->map[i].size = pack_lb64(map_end - end); } else if ((start < map_end) && (start > map_start)) { /* Shrink the end of the memory range */ mem->map[i].size = pack_lb64(start - map_start); } } } /* This function is used in mainboard specific code, too */ void lb_add_memory_range(struct lb_memory *mem, uint32_t type, uint64_t start, uint64_t size) { lb_remove_memory_range(mem, start, size); lb_memory_range(mem, type, start, size); lb_cleanup_memory_ranges(mem); } static void lb_dump_memory_ranges(struct lb_memory *mem) { int entries; int i; entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]); printk_debug("coreboot memory table:\n"); for(i = 0; i < entries; i++) { uint64_t entry_start = unpack_lb64(mem->map[i].start); uint64_t entry_size = unpack_lb64(mem->map[i].size); const char *entry_type; switch (mem->map[i].type) { case LB_MEM_RAM: entry_type="RAM"; break; case LB_MEM_RESERVED: entry_type="RESERVED"; break; case LB_MEM_ACPI: entry_type="ACPI"; break; case LB_MEM_NVS: entry_type="NVS"; break; case LB_MEM_UNUSABLE: entry_type="UNUSABLE"; break; case LB_MEM_VENDOR_RSVD: entry_type="VENDOR RESERVED"; break; case LB_MEM_TABLE: entry_type="CONFIGURATION TABLES"; break; default: entry_type="UNKNOWN!"; break; } printk_debug("%2d. %016llx-%016llx: %s\n", i, entry_start, entry_start+entry_size-1, entry_type); } } /* Routines to extract part so the coreboot table or * information from the coreboot table after we have written it. * Currently get_lb_mem relies on a global we can change the * implementaiton. */ static struct lb_memory *mem_ranges = 0; struct lb_memory *get_lb_mem(void) { return mem_ranges; } static void build_lb_mem_range(void *gp, struct device *dev, struct resource *res) { struct lb_memory *mem = gp; lb_memory_range(mem, LB_MEM_RAM, res->base, res->size); } static struct lb_memory *build_lb_mem(struct lb_header *head) { struct lb_memory *mem; /* Record where the lb memory ranges will live */ mem = lb_memory(head); mem_ranges = mem; /* Build the raw table of memory */ search_global_resources( IORESOURCE_MEM | IORESOURCE_CACHEABLE, IORESOURCE_MEM | IORESOURCE_CACHEABLE, build_lb_mem_range, mem); lb_cleanup_memory_ranges(mem); return mem; } #if CONFIG_WRITE_HIGH_TABLES == 1 extern uint64_t high_tables_base, high_tables_size; #endif unsigned long write_coreboot_table( unsigned long low_table_start, unsigned long low_table_end, unsigned long rom_table_start, unsigned long rom_table_end) { struct lb_header *head; struct lb_memory *mem; #if CONFIG_WRITE_HIGH_TABLES == 1 printk_debug("Writing high table forward entry at 0x%08lx\n", low_table_end); head = lb_table_init(low_table_end); lb_forward(head, (struct lb_header*)rom_table_end); low_table_end = (unsigned long) lb_table_fini(head, 0); printk_debug("New low_table_end: 0x%08lx\n", low_table_end); printk_debug("Now going to write high coreboot table at 0x%08lx\n", rom_table_end); head = lb_table_init(rom_table_end); rom_table_end = (unsigned long)head; printk_debug("rom_table_end = 0x%08lx\n", rom_table_end); #else if(low_table_end > (0x1000 - sizeof(struct lb_header))) { /* after 4K */ /* We need to put lbtable on to [0xf0000,0x100000) */ head = lb_table_init(rom_table_end); rom_table_end = (unsigned long)head; } else { head = lb_table_init(low_table_end); low_table_end = (unsigned long)head; } #endif printk_debug("Adjust low_table_end from 0x%08lx to ", low_table_end); low_table_end += 0xfff; // 4K aligned low_table_end &= ~0xfff; printk_debug("0x%08lx \n", low_table_end); /* The Linux kernel assumes this region is reserved */ printk_debug("Adjust rom_table_end from 0x%08lx to ", rom_table_end); rom_table_end += 0xffff; // 64K align rom_table_end &= ~0xffff; printk_debug("0x%08lx \n", rom_table_end); #if (CONFIG_HAVE_OPTION_TABLE == 1) { struct lb_record *rec_dest = lb_new_record(head); /* Copy the option config table, it's already a lb_record... */ memcpy(rec_dest, &option_table, option_table.size); /* Create cmos checksum entry in coreboot table */ lb_cmos_checksum(head); } #endif /* Record where RAM is located */ mem = build_lb_mem(head); /* Record the mptable and the the lb_table (This will be adjusted later) */ lb_add_memory_range(mem, LB_MEM_TABLE, low_table_start, low_table_end - low_table_start); /* Record the pirq table, acpi tables, and maybe the mptable */ lb_add_memory_range(mem, LB_MEM_TABLE, rom_table_start, rom_table_end-rom_table_start); #if CONFIG_WRITE_HIGH_TABLES == 1 printk_debug("Adding high table area\n"); // should this be LB_MEM_ACPI? lb_add_memory_range(mem, LB_MEM_TABLE, high_tables_base, high_tables_size); #endif #if (CONFIG_HAVE_MAINBOARD_RESOURCES == 1) add_mainboard_resources(mem); #endif lb_dump_memory_ranges(mem); /* Note: * I assume that there is always memory at immediately after * the low_table_end. This means that after I setup the coreboot table. * I can trivially fixup the reserved memory ranges to hold the correct * size of the coreboot table. */ /* Record our motherboard */ lb_mainboard(head); /* Record the serial port, if present */ lb_serial(head); /* Record our console setup */ lb_console(head); /* Record our various random string information */ lb_strings(head); /* Record our framebuffer */ lb_framebuffer(head); /* Remember where my valid memory ranges are */ return lb_table_fini(head, 1); }