/* SPDX-License-Identifier: GPL-2.0-only */ /* How much nesting do we support? */ #define ACPIGEN_LENSTACK_SIZE 10 /* If you need to change this, change acpigen_pop_len too */ #define ACPIGEN_RSVD_PKGLEN_BYTES 3 #include <lib.h> #include <string.h> #include <acpi/acpigen.h> #include <assert.h> #include <commonlib/helpers.h> #include <console/console.h> #include <device/device.h> #include <device/soundwire.h> #include <stdio.h> #include <types.h> static char *gencurrent; char *len_stack[ACPIGEN_LENSTACK_SIZE]; int ltop = 0; void acpigen_write_len_f(void) { ASSERT(ltop < (ACPIGEN_LENSTACK_SIZE - 1)) len_stack[ltop++] = gencurrent; /* Reserve ACPIGEN_RSVD_PKGLEN_BYTES bytes for PkgLength. The actual byte values will be written later in the corresponding acpigen_pop_len call. */ for (size_t i = 0; i < ACPIGEN_RSVD_PKGLEN_BYTES; i++) acpigen_emit_byte(0); } void acpigen_pop_len(void) { size_t len; ASSERT(ltop > 0) char *p = len_stack[--ltop]; len = gencurrent - p; const size_t payload_len = len - ACPIGEN_RSVD_PKGLEN_BYTES; if (len <= 0x3f + 2) { /* PkgLength of up to 0x3f can be encoded in one PkgLength byte instead of the reserved 3 bytes. Since only 1 PkgLength byte will be written, the payload data needs to be moved by 2 bytes */ memmove(&p[ACPIGEN_RSVD_PKGLEN_BYTES - 2], &p[ACPIGEN_RSVD_PKGLEN_BYTES], payload_len); /* Adjust the PkgLength to take into account that we only use 1 of the 3 reserved bytes */ len -= 2; /* The two most significant bits of PkgLength get the value of 0 to indicate there are no additional PkgLength bytes. In this case the single PkgLength byte encodes the length in its lower 6 bits */ p[0] = len; /* Adjust pointer for next ACPI bytecode byte */ acpigen_set_current(p + len); } else if (len <= 0xfff + 1) { /* PkgLength of up to 0xfff can be encoded in 2 PkgLength bytes instead of the reserved 3 bytes. Since only 2 PkgLength bytes will be written, the payload data needs to be moved by 1 byte */ memmove(&p[ACPIGEN_RSVD_PKGLEN_BYTES - 1], &p[ACPIGEN_RSVD_PKGLEN_BYTES], payload_len); /* Adjust the PkgLength to take into account that we only use 2 of the 3 reserved bytes */ len -= 1; /* The two most significant bits of PkgLength get the value of 1 to indicate there's a second PkgLength byte. The lower 4 bits of the first PkgLength byte and the second PkgLength byte encode the length */ p[0] = (0x1 << 6 | (len & 0xf)); p[1] = (len >> 4 & 0xff); /* Adjust pointer for next ACPI bytecode byte */ acpigen_set_current(p + len); } else if (len <= 0xfffff) { /* PkgLength of up to 0xfffff can be encoded in 3 PkgLength bytes. Since this is the amount of reserved bytes, no need to move the payload in this case */ /* The two most significant bits of PkgLength get the value of 2 to indicate there are two more PkgLength bytes following the first one. The lower 4 bits of the first PkgLength byte and the two following PkgLength bytes encode the length */ p[0] = (0x2 << 6 | (len & 0xf)); p[1] = (len >> 4 & 0xff); p[2] = (len >> 12 & 0xff); /* No need to adjust pointer for next ACPI bytecode byte */ } else { /* The case of PkgLength up to 0xfffffff isn't supported at the moment */ printk(BIOS_ERR, "%s: package length exceeds maximum of 0xfffff.\n", __func__); } } void acpigen_set_current(char *curr) { gencurrent = curr; } char *acpigen_get_current(void) { return gencurrent; } void acpigen_emit_byte(unsigned char b) { (*gencurrent++) = b; } void acpigen_emit_ext_op(uint8_t op) { acpigen_emit_byte(EXT_OP_PREFIX); acpigen_emit_byte(op); } void acpigen_emit_word(unsigned int data) { acpigen_emit_byte(data & 0xff); acpigen_emit_byte((data >> 8) & 0xff); } void acpigen_emit_dword(unsigned int data) { acpigen_emit_byte(data & 0xff); acpigen_emit_byte((data >> 8) & 0xff); acpigen_emit_byte((data >> 16) & 0xff); acpigen_emit_byte((data >> 24) & 0xff); } char *acpigen_write_package(int nr_el) { char *p; acpigen_emit_byte(PACKAGE_OP); acpigen_write_len_f(); p = acpigen_get_current(); acpigen_emit_byte(nr_el); return p; } void acpigen_write_byte(unsigned int data) { acpigen_emit_byte(BYTE_PREFIX); acpigen_emit_byte(data & 0xff); } void acpigen_write_word(unsigned int data) { acpigen_emit_byte(WORD_PREFIX); acpigen_emit_word(data); } void acpigen_write_dword(unsigned int data) { acpigen_emit_byte(DWORD_PREFIX); acpigen_emit_dword(data); } void acpigen_write_qword(uint64_t data) { acpigen_emit_byte(QWORD_PREFIX); acpigen_emit_dword(data & 0xffffffff); acpigen_emit_dword((data >> 32) & 0xffffffff); } void acpigen_write_zero(void) { acpigen_emit_byte(ZERO_OP); } void acpigen_write_one(void) { acpigen_emit_byte(ONE_OP); } void acpigen_write_ones(void) { acpigen_emit_byte(ONES_OP); } void acpigen_write_integer(uint64_t data) { if (data == 0) acpigen_write_zero(); else if (data == 1) acpigen_write_one(); else if (data <= 0xff) acpigen_write_byte((unsigned char)data); else if (data <= 0xffff) acpigen_write_word((unsigned int)data); else if (data <= 0xffffffff) acpigen_write_dword((unsigned int)data); else acpigen_write_qword(data); } void acpigen_write_name_byte(const char *name, uint8_t val) { acpigen_write_name(name); acpigen_write_byte(val); } void acpigen_write_name_dword(const char *name, uint32_t val) { acpigen_write_name(name); acpigen_write_dword(val); } void acpigen_write_name_qword(const char *name, uint64_t val) { acpigen_write_name(name); acpigen_write_qword(val); } void acpigen_write_name_integer(const char *name, uint64_t val) { acpigen_write_name(name); acpigen_write_integer(val); } void acpigen_write_name_string(const char *name, const char *string) { acpigen_write_name(name); acpigen_write_string(string); } void acpigen_write_name_unicode(const char *name, const char *string) { const size_t len = strlen(string) + 1; acpigen_write_name(name); acpigen_emit_byte(BUFFER_OP); acpigen_write_len_f(); acpigen_write_integer(2 * len); for (size_t i = 0; i < len; i++) { const signed char c = string[i]; /* Simple ASCII to UTF-16 conversion, replace non ASCII characters */ acpigen_emit_word(c >= 0 ? c : '?'); } acpigen_pop_len(); } void acpigen_emit_stream(const char *data, int size) { int i; for (i = 0; i < size; i++) acpigen_emit_byte(data[i]); } void acpigen_emit_string(const char *string) { acpigen_emit_stream(string, string ? strlen(string) : 0); acpigen_emit_byte('\0'); /* NUL */ } void acpigen_write_string(const char *string) { acpigen_emit_byte(STRING_PREFIX); acpigen_emit_string(string); } void acpigen_write_coreboot_hid(enum coreboot_acpi_ids id) { char hid[9]; /* BOOTxxxx */ snprintf(hid, sizeof(hid), "%.4s%04X", COREBOOT_ACPI_ID, id); acpigen_write_name_string("_HID", hid); } /* * The naming conventions for ACPI namespace names are a bit tricky as * each element has to be 4 chars wide ("All names are a fixed 32 bits.") * and "By convention, when an ASL compiler pads a name shorter than 4 * characters, it is done so with trailing underscores ('_')". * * Check sections 5.3, 18.2.2 and 18.4 of ACPI spec 3.0 for details. */ static void acpigen_emit_simple_namestring(const char *name) { int i; char ud[] = "____"; for (i = 0; i < 4; i++) { if ((name[i] == '\0') || (name[i] == '.')) { acpigen_emit_stream(ud, 4 - i); break; } acpigen_emit_byte(name[i]); } } static void acpigen_emit_double_namestring(const char *name, int dotpos) { acpigen_emit_byte(DUAL_NAME_PREFIX); acpigen_emit_simple_namestring(name); acpigen_emit_simple_namestring(&name[dotpos + 1]); } static void acpigen_emit_multi_namestring(const char *name) { int count = 0; unsigned char *pathlen; acpigen_emit_byte(MULTI_NAME_PREFIX); acpigen_emit_byte(ZERO_OP); pathlen = ((unsigned char *)acpigen_get_current()) - 1; while (name[0] != '\0') { acpigen_emit_simple_namestring(name); /* find end or next entity */ while ((name[0] != '.') && (name[0] != '\0')) name++; /* forward to next */ if (name[0] == '.') name++; count++; } pathlen[0] = count; } void acpigen_emit_namestring(const char *namepath) { int dotcount = 0, i; int dotpos = 0; /* Check for NULL pointer */ if (!namepath) return; /* We can start with a '\'. */ if (namepath[0] == '\\') { acpigen_emit_byte('\\'); namepath++; } /* And there can be any number of '^' */ while (namepath[0] == '^') { acpigen_emit_byte('^'); namepath++; } /* If we have only \\ or only ^...^. Then we need to put a null name (0x00). */ if (namepath[0] == '\0') { acpigen_emit_byte(ZERO_OP); return; } i = 0; while (namepath[i] != '\0') { if (namepath[i] == '.') { dotcount++; dotpos = i; } i++; } if (dotcount == 0) acpigen_emit_simple_namestring(namepath); else if (dotcount == 1) acpigen_emit_double_namestring(namepath, dotpos); else acpigen_emit_multi_namestring(namepath); } void acpigen_write_name(const char *name) { acpigen_emit_byte(NAME_OP); acpigen_emit_namestring(name); } void acpigen_write_scope(const char *name) { acpigen_emit_byte(SCOPE_OP); acpigen_write_len_f(); acpigen_emit_namestring(name); } void acpigen_get_package_op_element(uint8_t package_op, unsigned int element, uint8_t dest_op) { /* <dest_op> = DeRefOf (<package_op>[<element>]) */ acpigen_write_store(); acpigen_emit_byte(DEREF_OP); acpigen_emit_byte(INDEX_OP); acpigen_emit_byte(package_op); acpigen_write_integer(element); acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */ acpigen_emit_byte(dest_op); } void acpigen_set_package_op_element_int(uint8_t package_op, unsigned int element, uint64_t src) { /* DeRefOf (<package>[<element>]) = <src> */ acpigen_write_store(); acpigen_write_integer(src); acpigen_emit_byte(DEREF_OP); acpigen_emit_byte(INDEX_OP); acpigen_emit_byte(package_op); acpigen_write_integer(element); acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */ } void acpigen_get_package_element(const char *package, unsigned int element, uint8_t dest_op) { /* <dest_op> = <package>[<element>] */ acpigen_write_store(); acpigen_emit_byte(INDEX_OP); acpigen_emit_namestring(package); acpigen_write_integer(element); acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */ acpigen_emit_byte(dest_op); } void acpigen_set_package_element_int(const char *package, unsigned int element, uint64_t src) { /* <package>[<element>] = <src> */ acpigen_write_store(); acpigen_write_integer(src); acpigen_emit_byte(INDEX_OP); acpigen_emit_namestring(package); acpigen_write_integer(element); acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */ } void acpigen_set_package_element_namestr(const char *package, unsigned int element, const char *src) { /* <package>[<element>] = <src> */ acpigen_write_store(); acpigen_emit_namestring(src); acpigen_emit_byte(INDEX_OP); acpigen_emit_namestring(package); acpigen_write_integer(element); acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */ } void acpigen_write_processor_namestring(unsigned int cpu_index) { char buffer[16]; snprintf(buffer, sizeof(buffer), "\\_SB." CONFIG_ACPI_CPU_STRING, cpu_index); acpigen_emit_namestring(buffer); } /* Processor() operator is deprecated as of ACPI 6.0, use Device() instead. */ void acpigen_write_processor(u8 cpuindex, u32 pblock_addr, u8 pblock_len) { /* Processor (\_SB.CPcpuindex, cpuindex, pblock_addr, pblock_len) { */ acpigen_emit_ext_op(PROCESSOR_OP); acpigen_write_len_f(); acpigen_write_processor_namestring(cpuindex); acpigen_emit_byte(cpuindex); acpigen_emit_dword(pblock_addr); acpigen_emit_byte(pblock_len); } void acpigen_write_processor_device(unsigned int cpu_index) { acpigen_emit_ext_op(DEVICE_OP); acpigen_write_len_f(); acpigen_write_processor_namestring(cpu_index); acpigen_write_name_string("_HID", "ACPI0007"); acpigen_write_name_integer("_UID", cpu_index); } void acpigen_write_processor_package(const char *const name, const unsigned int first_core, const unsigned int core_count) { unsigned int i; acpigen_write_name(name); acpigen_write_package(core_count); for (i = first_core; i < first_core + core_count; ++i) acpigen_write_processor_namestring(i); acpigen_pop_len(); } /* Method to notify all CPU cores */ void acpigen_write_processor_cnot(const unsigned int number_of_cores) { int core_id; acpigen_write_method("\\_SB.CNOT", 1); for (core_id = 0; core_id < number_of_cores; core_id++) { acpigen_emit_byte(NOTIFY_OP); acpigen_write_processor_namestring(core_id); acpigen_emit_byte(ARG0_OP); } acpigen_pop_len(); } /* * Generate ACPI AML code for OperationRegion * Arg0: Pointer to struct opregion opreg = OPREGION(rname, space, offset, len) * where rname is region name, space is region space, offset is region offset & * len is region length. * OperationRegion(regionname, regionspace, regionoffset, regionlength) */ void acpigen_write_opregion(const struct opregion *opreg) { /* OpregionOp */ acpigen_emit_ext_op(OPREGION_OP); /* NameString 4 chars only */ acpigen_emit_simple_namestring(opreg->name); /* RegionSpace */ acpigen_emit_byte(opreg->regionspace); /* RegionOffset & RegionLen, it can be byte word or double word */ acpigen_write_integer(opreg->regionoffset); acpigen_write_integer(opreg->regionlen); } /* * Generate ACPI AML code for Mutex * Arg0: Pointer to name of mutex * Arg1: Initial value of mutex */ void acpigen_write_mutex(const char *name, const uint8_t flags) { /* MutexOp */ acpigen_emit_ext_op(MUTEX_OP); acpigen_emit_namestring(name); acpigen_emit_byte(flags); } void acpigen_write_acquire(const char *name, const uint16_t val) { /* AcquireOp */ acpigen_emit_ext_op(ACQUIRE_OP); acpigen_emit_namestring(name); acpigen_emit_word(val); } void acpigen_write_release(const char *name) { /* ReleaseOp */ acpigen_emit_ext_op(RELEASE_OP); acpigen_emit_namestring(name); } static void acpigen_write_field_length(uint32_t len) { uint8_t i, j; uint8_t emit[4]; i = 1; if (len < 0x40) { emit[0] = len & 0x3F; } else { emit[0] = len & 0xF; len >>= 4; while (len) { emit[i] = len & 0xFF; i++; len >>= 8; } } /* Update bit 7:6 : Number of bytes followed by emit[0] */ emit[0] |= (i - 1) << 6; for (j = 0; j < i; j++) acpigen_emit_byte(emit[j]); } static void acpigen_write_field_offset(uint32_t offset, uint32_t current_bit_pos) { uint32_t diff_bits; if (offset < current_bit_pos) { printk(BIOS_WARNING, "%s: Cannot move offset backward", __func__); return; } diff_bits = offset - current_bit_pos; /* Upper limit */ if (diff_bits > 0xFFFFFFF) { printk(BIOS_WARNING, "%s: Offset very large to encode", __func__); return; } acpigen_emit_byte(0); acpigen_write_field_length(diff_bits); } void acpigen_write_field_name(const char *name, uint32_t size) { acpigen_emit_simple_namestring(name); acpigen_write_field_length(size); } static void acpigen_write_field_reserved(uint32_t size) { acpigen_emit_byte(0); acpigen_write_field_length(size); } /* * Generate ACPI AML code for Field * Arg0: region name * Arg1: Pointer to struct fieldlist. * Arg2: no. of entries in Arg1 * Arg3: flags which indicate filed access type, lock rule & update rule. * Example with fieldlist * struct fieldlist l[] = { * FIELDLIST_OFFSET(0x84), * FIELDLIST_NAMESTR("PMCS", 2), * FIELDLIST_RESERVED(6), * }; * acpigen_write_field("UART", l, ARRAY_SIZE(l), FIELD_ANYACC | FIELD_NOLOCK | * FIELD_PRESERVE); * Output: * Field (UART, AnyAcc, NoLock, Preserve) * { * Offset (0x84), * PMCS, 2, * , 6, * } */ void acpigen_write_field(const char *name, const struct fieldlist *l, size_t count, uint8_t flags) { uint16_t i; uint32_t current_bit_pos = 0; /* FieldOp */ acpigen_emit_ext_op(FIELD_OP); /* Package Length */ acpigen_write_len_f(); /* NameString 4 chars only */ acpigen_emit_simple_namestring(name); /* Field Flag */ acpigen_emit_byte(flags); for (i = 0; i < count; i++) { switch (l[i].type) { case NAME_STRING: acpigen_write_field_name(l[i].name, l[i].bits); current_bit_pos += l[i].bits; break; case RESERVED: acpigen_write_field_reserved(l[i].bits); current_bit_pos += l[i].bits; break; case OFFSET: acpigen_write_field_offset(l[i].bits, current_bit_pos); current_bit_pos = l[i].bits; break; default: printk(BIOS_ERR, "%s: Invalid field type 0x%X\n", __func__, l[i].type); break; } } acpigen_pop_len(); } /* * Generate ACPI AML code for IndexField * Arg0: region name * Arg1: Pointer to struct fieldlist. * Arg2: no. of entries in Arg1 * Arg3: flags which indicate filed access type, lock rule & update rule. * Example with fieldlist * struct fieldlist l[] = { * FIELDLIST_OFFSET(0x84), * FIELDLIST_NAMESTR("PMCS", 2), * }; * acpigen_write_field("IDX", "DATA" l, ARRAY_SIZE(l), FIELD_ANYACC | * FIELD_NOLOCK | * FIELD_PRESERVE); * Output: * IndexField (IDX, DATA, AnyAcc, NoLock, Preserve) * { * Offset (0x84), * PMCS, 2 * } */ void acpigen_write_indexfield(const char *idx, const char *data, struct fieldlist *l, size_t count, uint8_t flags) { uint16_t i; uint32_t current_bit_pos = 0; /* FieldOp */ acpigen_emit_ext_op(INDEX_FIELD_OP); /* Package Length */ acpigen_write_len_f(); /* NameString 4 chars only */ acpigen_emit_simple_namestring(idx); /* NameString 4 chars only */ acpigen_emit_simple_namestring(data); /* Field Flag */ acpigen_emit_byte(flags); for (i = 0; i < count; i++) { switch (l[i].type) { case NAME_STRING: acpigen_write_field_name(l[i].name, l[i].bits); current_bit_pos += l[i].bits; break; case OFFSET: acpigen_write_field_offset(l[i].bits, current_bit_pos); current_bit_pos = l[i].bits; break; default: printk(BIOS_ERR, "%s: Invalid field type 0x%X\n", __func__, l[i].type); break; } } acpigen_pop_len(); } void acpigen_write_empty_PCT(void) { /* Name (_PCT, Package (0x02) { ResourceTemplate () { Register (FFixedHW, 0x00, // Bit Width 0x00, // Bit Offset 0x0000000000000000, // Address ,) }, ResourceTemplate () { Register (FFixedHW, 0x00, // Bit Width 0x00, // Bit Offset 0x0000000000000000, // Address ,) } }) */ static char stream[] = { /* 00000030 "0._PCT.," */ 0x08, 0x5F, 0x50, 0x43, 0x54, 0x12, 0x2C, /* 00000038 "........" */ 0x02, 0x11, 0x14, 0x0A, 0x11, 0x82, 0x0C, 0x00, /* 00000040 "........" */ 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000048 "....y..." */ 0x00, 0x00, 0x00, 0x00, 0x79, 0x00, 0x11, 0x14, /* 00000050 "........" */ 0x0A, 0x11, 0x82, 0x0C, 0x00, 0x7F, 0x00, 0x00, /* 00000058 "........" */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79, 0x00 }; acpigen_emit_stream(stream, ARRAY_SIZE(stream)); } void acpigen_write_PTC(uint8_t duty_width, uint8_t duty_offset, uint16_t p_cnt) { /* Name (_PTC, Package (0x02) { ResourceTemplate () { Register (FFixedHW, 0x00, // Duty Width 0x00, // Duty Offset 0x0000000000000000, // P_CNT IO Address ,) }, ResourceTemplate () { Register (FFixedHW, 0x00, // Duty Width 0x00, // Duty Offset 0x0000000000000000, // P_CNT IO Address ,) } }) */ acpi_addr_t addr = { .bit_width = duty_width, .bit_offset = duty_offset, .access_size = ACPI_ACCESS_SIZE_UNDEFINED, .addrl = p_cnt, .addrh = 0, }; if (addr.addrl != 0) addr.space_id = ACPI_ADDRESS_SPACE_IO; else addr.space_id = ACPI_ADDRESS_SPACE_FIXED; acpigen_write_name("_PTC"); acpigen_write_package(2); /* ControlRegister */ acpigen_write_register_resource(&addr); /* StatusRegister */ acpigen_write_register_resource(&addr); acpigen_pop_len(); } void acpigen_write_empty_PTC(void) { acpigen_write_PTC(0, 0, 0); } static void __acpigen_write_method(const char *name, uint8_t flags) { acpigen_emit_byte(METHOD_OP); acpigen_write_len_f(); acpigen_emit_namestring(name); acpigen_emit_byte(flags); } /* Method (name, nargs, NotSerialized) */ void acpigen_write_method(const char *name, int nargs) { __acpigen_write_method(name, (nargs & 7)); } /* Method (name, nargs, Serialized) */ void acpigen_write_method_serialized(const char *name, int nargs) { __acpigen_write_method(name, (nargs & 7) | (1 << 3)); } void acpigen_write_device(const char *name) { acpigen_emit_ext_op(DEVICE_OP); acpigen_write_len_f(); acpigen_emit_namestring(name); } void acpigen_write_thermal_zone(const char *name) { acpigen_emit_ext_op(THERMAL_ZONE_OP); acpigen_write_len_f(); acpigen_emit_namestring(name); } void acpigen_write_STA(uint8_t status) { /* * Method (_STA, 0, NotSerialized) { Return (status) } */ acpigen_write_method("_STA", 0); acpigen_emit_byte(RETURN_OP); acpigen_write_byte(status); acpigen_pop_len(); } void acpigen_write_STA_ext(const char *namestring) { /* * Method (_STA, 0, NotSerialized) { Return (ext_val) } */ acpigen_write_method("_STA", 0); acpigen_emit_byte(RETURN_OP); acpigen_emit_namestring(namestring); acpigen_pop_len(); } void acpigen_write_BBN(uint8_t base_bus_number) { /* * Method (_BBN, 0, NotSerialized) { Return (status) } */ acpigen_write_method("_BBN", 0); acpigen_emit_byte(RETURN_OP); acpigen_write_byte(base_bus_number); acpigen_pop_len(); } void acpigen_write_SEG(uint8_t segment_group_number) { /* * Method (_SEG, 0, NotSerialized) { Return (status) } */ acpigen_write_method("_SEG", 0); acpigen_emit_byte(RETURN_OP); acpigen_write_byte(segment_group_number); acpigen_pop_len(); } void acpigen_write_LPI_package(u64 level, const struct acpi_lpi_state *states, u16 nentries) { /* * Name (_LPI, Package (0x06) // _LPI: Low Power Idle States * { * 0x0000, * 0x0000000000000000, * 0x0003, * Package (0x0A) * { * 0x00000002, * 0x00000001, * 0x00000001, * 0x00000000, * 0x00000000, * 0x00000000, * ResourceTemplate () * { * Register (FFixedHW, * 0x02, // Bit Width * 0x02, // Bit Offset * 0x0000000000000000, // Address * ,) * }, * * ResourceTemplate () * { * Register (SystemMemory, * 0x00, // Bit Width * 0x00, // Bit Offset * 0x0000000000000000, // Address * ,) * }, * * ResourceTemplate () * { * Register (SystemMemory, * 0x00, // Bit Width * 0x00, // Bit Offset * 0x0000000000000000, // Address * ,) * }, * * "C1" * }, * ... * } */ acpigen_write_name("_LPI"); acpigen_write_package(3 + nentries); acpigen_write_word(0); /* Revision */ acpigen_write_qword(level); acpigen_write_word(nentries); for (size_t i = 0; i < nentries; i++, states++) { acpigen_write_package(0xA); acpigen_write_dword(states->min_residency_us); acpigen_write_dword(states->worst_case_wakeup_latency_us); acpigen_write_dword(states->flags); acpigen_write_dword(states->arch_context_lost_flags); acpigen_write_dword(states->residency_counter_frequency_hz); acpigen_write_dword(states->enabled_parent_state); acpigen_write_register_resource(&states->entry_method); acpigen_write_register_resource(&states->residency_counter_register); acpigen_write_register_resource(&states->usage_counter_register); acpigen_write_string(states->state_name); acpigen_pop_len(); } acpigen_pop_len(); } /* * Generates a func with max supported P-states. */ void acpigen_write_PPC(u8 nr) { /* Method (_PPC, 0, NotSerialized) { Return (nr) } */ acpigen_write_method("_PPC", 0); acpigen_emit_byte(RETURN_OP); /* arg */ acpigen_write_byte(nr); acpigen_pop_len(); } /* * Generates a func with max supported P-states saved * in the variable PPCM. */ void acpigen_write_PPC_NVS(void) { /* Method (_PPC, 0, NotSerialized) { Return (PPCM) } */ acpigen_write_method("_PPC", 0); acpigen_emit_byte(RETURN_OP); /* arg */ acpigen_emit_namestring("PPCM"); acpigen_pop_len(); } void acpigen_write_TPC(const char *gnvs_tpc_limit) { /* // Sample _TPC method Method (_TPC, 0, NotSerialized) { Return (\TLVL) } */ acpigen_write_method("_TPC", 0); acpigen_emit_byte(RETURN_OP); acpigen_emit_namestring(gnvs_tpc_limit); acpigen_pop_len(); } void acpigen_write_PRW(u32 wake, u32 level) { /* * Name (_PRW, Package () { wake, level } */ acpigen_write_name("_PRW"); acpigen_write_package(2); acpigen_write_integer(wake); acpigen_write_integer(level); acpigen_pop_len(); } void acpigen_write_PSS_package(u32 coreFreq, u32 power, u32 transLat, u32 busmLat, u32 control, u32 status) { acpigen_write_package(6); acpigen_write_dword(coreFreq); acpigen_write_dword(power); acpigen_write_dword(transLat); acpigen_write_dword(busmLat); acpigen_write_dword(control); acpigen_write_dword(status); acpigen_pop_len(); printk(BIOS_DEBUG, "PSS: %uMHz power %u control 0x%x status 0x%x\n", coreFreq, power, control, status); } void acpigen_write_pss_object(const struct acpi_sw_pstate *pstate_values, size_t nentries) { size_t pstate; acpigen_write_name("_PSS"); acpigen_write_package(nentries); for (pstate = 0; pstate < nentries; pstate++) { acpigen_write_PSS_package( pstate_values->core_freq, pstate_values->power, pstate_values->transition_latency, pstate_values->bus_master_latency, pstate_values->control_value, pstate_values->status_value); pstate_values++; } acpigen_pop_len(); } void acpigen_write_PSD_package(u32 domain, u32 numprocs, PSD_coord coordtype) { acpigen_write_name("_PSD"); acpigen_write_package(1); acpigen_write_package(5); acpigen_write_byte(5); // 5 values acpigen_write_byte(0); // revision 0 acpigen_write_dword(domain); acpigen_write_dword(coordtype); acpigen_write_dword(numprocs); acpigen_pop_len(); acpigen_pop_len(); } void acpigen_write_CST_package_entry(const acpi_cstate_t *cstate) { acpigen_write_package(4); acpigen_write_register_resource(&cstate->resource); acpigen_write_byte(cstate->ctype); acpigen_write_word(cstate->latency); acpigen_write_dword(cstate->power); acpigen_pop_len(); } void acpigen_write_CST_package(const acpi_cstate_t *cstate, int nentries) { int i; acpigen_write_name("_CST"); acpigen_write_package(nentries+1); acpigen_write_integer(nentries); for (i = 0; i < nentries; i++) acpigen_write_CST_package_entry(cstate + i); acpigen_pop_len(); } void acpigen_write_CSD_package(u32 domain, u32 numprocs, CSD_coord coordtype, u32 index) { acpigen_write_name("_CSD"); acpigen_write_package(1); acpigen_write_package(6); acpigen_write_integer(6); // 6 values acpigen_write_byte(0); // revision 0 acpigen_write_dword(domain); acpigen_write_dword(coordtype); acpigen_write_dword(numprocs); acpigen_write_dword(index); acpigen_pop_len(); acpigen_pop_len(); } void acpigen_write_TSS_package(int entries, acpi_tstate_t *tstate_list) { /* Sample _TSS package with 100% and 50% duty cycles Name (_TSS, Package (0x02) { Package(){100, 1000, 0, 0x00, 0) Package(){50, 520, 0, 0x18, 0) }) */ int i; acpi_tstate_t *tstate = tstate_list; acpigen_write_name("_TSS"); acpigen_write_package(entries); for (i = 0; i < entries; i++) { acpigen_write_package(5); acpigen_write_dword(tstate->percent); acpigen_write_dword(tstate->power); acpigen_write_dword(tstate->latency); acpigen_write_dword(tstate->control); acpigen_write_dword(tstate->status); acpigen_pop_len(); tstate++; } acpigen_pop_len(); } void acpigen_write_TSD_package(u32 domain, u32 numprocs, PSD_coord coordtype) { acpigen_write_name("_TSD"); acpigen_write_package(1); acpigen_write_package(5); acpigen_write_byte(5); // 5 values acpigen_write_byte(0); // revision 0 acpigen_write_dword(domain); acpigen_write_dword(coordtype); acpigen_write_dword(numprocs); acpigen_pop_len(); acpigen_pop_len(); } void acpigen_write_mem32fixed(int readwrite, u32 base, u32 size) { /* * ACPI 4.0 section 6.4.3.4: 32-Bit Fixed Memory Range Descriptor * Byte 0: * Bit7 : 1 => big item * Bit6-0: 0000110 (0x6) => 32-bit fixed memory */ acpigen_emit_byte(0x86); /* Byte 1+2: length (0x0009) */ acpigen_emit_byte(0x09); acpigen_emit_byte(0x00); /* bit1-7 are ignored */ acpigen_emit_byte(readwrite ? 0x01 : 0x00); acpigen_emit_dword(base); acpigen_emit_dword(size); } static void acpigen_write_register(const acpi_addr_t *addr) { acpigen_emit_byte(0x82); /* Register Descriptor */ acpigen_emit_byte(0x0c); /* Register Length 7:0 */ acpigen_emit_byte(0x00); /* Register Length 15:8 */ acpigen_emit_byte(addr->space_id); /* Address Space ID */ acpigen_emit_byte(addr->bit_width); /* Register Bit Width */ acpigen_emit_byte(addr->bit_offset); /* Register Bit Offset */ acpigen_emit_byte(addr->access_size); /* Register Access Size */ acpigen_emit_dword(addr->addrl); /* Register Address Low */ acpigen_emit_dword(addr->addrh); /* Register Address High */ } void acpigen_write_register_resource(const acpi_addr_t *addr) { acpigen_write_resourcetemplate_header(); acpigen_write_register(addr); acpigen_write_resourcetemplate_footer(); } void acpigen_write_irq(u16 mask) { /* * ACPI 3.0b section 6.4.2.1: IRQ Descriptor * Byte 0: * Bit7 : 0 => small item * Bit6-3: 0100 (0x4) => IRQ port descriptor * Bit2-0: 010 (0x2) => 2 Bytes long */ acpigen_emit_byte(0x22); acpigen_emit_byte(mask & 0xff); acpigen_emit_byte((mask >> 8) & 0xff); } void acpigen_write_io16(u16 min, u16 max, u8 align, u8 len, u8 decode16) { /* * ACPI 4.0 section 6.4.2.6: I/O Port Descriptor * Byte 0: * Bit7 : 0 => small item * Bit6-3: 1000 (0x8) => I/O port descriptor * Bit2-0: 111 (0x7) => 7 Bytes long */ acpigen_emit_byte(0x47); /* Does the device decode all 16 or just 10 bits? */ /* bit1-7 are ignored */ acpigen_emit_byte(decode16 ? 0x01 : 0x00); /* minimum base address the device may be configured for */ acpigen_emit_byte(min & 0xff); acpigen_emit_byte((min >> 8) & 0xff); /* maximum base address the device may be configured for */ acpigen_emit_byte(max & 0xff); acpigen_emit_byte((max >> 8) & 0xff); /* alignment for min base */ acpigen_emit_byte(align & 0xff); acpigen_emit_byte(len & 0xff); } void acpigen_write_resourcetemplate_header(void) { /* * A ResourceTemplate() is a Buffer() with a * (Byte|Word|DWord) containing the length, followed by one or more * resource items, terminated by the end tag. * (small item 0xf, len 1) */ acpigen_emit_byte(BUFFER_OP); acpigen_write_len_f(); acpigen_emit_byte(WORD_PREFIX); len_stack[ltop++] = acpigen_get_current(); /* Add 2 dummy bytes for the ACPI word (keep aligned with the calculation in acpigen_write_resourcetemplate() below). */ acpigen_emit_byte(0x00); acpigen_emit_byte(0x00); } void acpigen_write_resourcetemplate_footer(void) { char *p = len_stack[--ltop]; int len; /* * end tag (acpi 4.0 Section 6.4.2.8) * 0x79 <checksum> * 0x00 is treated as a good checksum according to the spec * and is what iasl generates. */ acpigen_emit_byte(0x79); acpigen_emit_byte(0x00); /* Start counting past the 2-bytes length added in acpigen_write_resourcetemplate() above. */ len = acpigen_get_current() - (p + 2); /* patch len word */ p[0] = len & 0xff; p[1] = (len >> 8) & 0xff; /* patch len field */ acpigen_pop_len(); } static void acpigen_add_mainboard_rsvd_mem32(void *gp, struct device *dev, struct resource *res) { acpigen_write_mem32fixed(0, res->base, res->size); } static void acpigen_add_mainboard_rsvd_io(void *gp, struct device *dev, struct resource *res) { resource_t base = res->base; resource_t size = res->size; while (size > 0) { resource_t sz = size > 255 ? 255 : size; acpigen_write_io16(base, base, 0, sz, 1); size -= sz; base += sz; } } void acpigen_write_mainboard_resource_template(void) { acpigen_write_resourcetemplate_header(); /* Add reserved memory ranges. */ search_global_resources( IORESOURCE_MEM | IORESOURCE_RESERVE, IORESOURCE_MEM | IORESOURCE_RESERVE, acpigen_add_mainboard_rsvd_mem32, 0); /* Add reserved io ranges. */ search_global_resources( IORESOURCE_IO | IORESOURCE_RESERVE, IORESOURCE_IO | IORESOURCE_RESERVE, acpigen_add_mainboard_rsvd_io, 0); acpigen_write_resourcetemplate_footer(); } void acpigen_write_mainboard_resources(const char *scope, const char *name) { acpigen_write_scope(scope); acpigen_write_name(name); acpigen_write_mainboard_resource_template(); acpigen_pop_len(); } static int hex2bin(const char c) { if (c >= 'A' && c <= 'F') return c - 'A' + 10; if (c >= 'a' && c <= 'f') return c - 'a' + 10; return c - '0'; } void acpigen_emit_eisaid(const char *eisaid) { u32 compact = 0; /* Clamping individual values would be better but there is a disagreement over what is a valid EISA id, so accept anything and don't clamp, parent code should create a valid EISAid. */ compact |= (eisaid[0] - 'A' + 1) << 26; compact |= (eisaid[1] - 'A' + 1) << 21; compact |= (eisaid[2] - 'A' + 1) << 16; compact |= hex2bin(eisaid[3]) << 12; compact |= hex2bin(eisaid[4]) << 8; compact |= hex2bin(eisaid[5]) << 4; compact |= hex2bin(eisaid[6]); acpigen_emit_byte(0xc); acpigen_emit_byte((compact >> 24) & 0xff); acpigen_emit_byte((compact >> 16) & 0xff); acpigen_emit_byte((compact >> 8) & 0xff); acpigen_emit_byte(compact & 0xff); } /* * ToUUID(uuid) * * ACPI 6.1 Section 19.6.136 table 19-385 defines a special output * order for the bytes that make up a UUID Buffer object. * UUID byte order for input: * aabbccdd-eeff-gghh-iijj-kkllmmnnoopp * UUID byte order for output: * ddccbbaa-ffee-hhgg-iijj-kkllmmnnoopp */ #define UUID_LEN 16 void acpigen_write_uuid(const char *uuid) { uint8_t buf[UUID_LEN]; size_t i, order[UUID_LEN] = { 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15 }; /* Parse UUID string into bytes */ if (hexstrtobin(uuid, buf, UUID_LEN) < UUID_LEN) return; /* BufferOp */ acpigen_emit_byte(BUFFER_OP); acpigen_write_len_f(); /* Buffer length in bytes */ acpigen_write_word(UUID_LEN); /* Output UUID in expected order */ for (i = 0; i < UUID_LEN; i++) acpigen_emit_byte(buf[order[i]]); acpigen_pop_len(); } /* * Name (_PRx, Package(One) { name }) * ... * PowerResource (name, level, order) */ void acpigen_write_power_res(const char *name, uint8_t level, uint16_t order, const char * const dev_states[], size_t dev_states_count) { size_t i; for (i = 0; i < dev_states_count; i++) { acpigen_write_name(dev_states[i]); acpigen_write_package(1); acpigen_emit_simple_namestring(name); acpigen_pop_len(); /* Package */ } acpigen_emit_ext_op(POWER_RES_OP); acpigen_write_len_f(); acpigen_emit_simple_namestring(name); acpigen_emit_byte(level); acpigen_emit_word(order); } /* Sleep (ms) */ void acpigen_write_sleep(uint64_t sleep_ms) { acpigen_emit_ext_op(SLEEP_OP); acpigen_write_integer(sleep_ms); } void acpigen_write_store(void) { acpigen_emit_byte(STORE_OP); } /* Store (src, dst) */ void acpigen_write_store_ops(uint8_t src, uint8_t dst) { acpigen_write_store(); acpigen_emit_byte(src); acpigen_emit_byte(dst); } /* Store (src, "namestr") */ void acpigen_write_store_op_to_namestr(uint8_t src, const char *dst) { acpigen_write_store(); acpigen_emit_byte(src); acpigen_emit_namestring(dst); } /* Store (src, "namestr") */ void acpigen_write_store_int_to_namestr(uint64_t src, const char *dst) { acpigen_write_store(); acpigen_write_integer(src); acpigen_emit_namestring(dst); } /* Store ("namestr", dst) */ void acpigen_write_store_namestr_to_op(const char *src, uint8_t dst) { acpigen_write_store(); acpigen_emit_namestring(src); acpigen_emit_byte(dst); } /* Store (src, dst) */ void acpigen_write_store_int_to_op(uint64_t src, uint8_t dst) { acpigen_write_store(); acpigen_write_integer(src); acpigen_emit_byte(dst); } /* Store ("namestr", "namestr") */ void acpigen_write_store_namestr_to_namestr(const char *src, const char *dst) { acpigen_write_store(); acpigen_emit_namestring(src); acpigen_emit_namestring(dst); } /* Or (arg1, arg2, res) */ void acpigen_write_or(uint8_t arg1, uint8_t arg2, uint8_t res) { acpigen_emit_byte(OR_OP); acpigen_emit_byte(arg1); acpigen_emit_byte(arg2); acpigen_emit_byte(res); } /* Xor (arg1, arg2, res) */ void acpigen_write_xor(uint8_t arg1, uint8_t arg2, uint8_t res) { acpigen_emit_byte(XOR_OP); acpigen_emit_byte(arg1); acpigen_emit_byte(arg2); acpigen_emit_byte(res); } /* And (arg1, arg2, res) */ void acpigen_write_and(uint8_t arg1, uint8_t arg2, uint8_t res) { acpigen_emit_byte(AND_OP); acpigen_emit_byte(arg1); acpigen_emit_byte(arg2); acpigen_emit_byte(res); } /* Not (arg, res) */ void acpigen_write_not(uint8_t arg, uint8_t res) { acpigen_emit_byte(NOT_OP); acpigen_emit_byte(arg); acpigen_emit_byte(res); } /* Concatenate (str, src_res, dest_res) */ void acpigen_concatenate_string_op(const char *str, uint8_t src_res, uint8_t dest_res) { acpigen_emit_byte(CONCATENATE_OP); acpigen_write_string(str); acpigen_emit_byte(src_res); acpigen_emit_byte(dest_res); } /* Store (str, DEBUG) */ void acpigen_write_debug_string(const char *str) { acpigen_write_store(); acpigen_write_string(str); acpigen_emit_ext_op(DEBUG_OP); } /* Store (val, DEBUG) */ void acpigen_write_debug_integer(uint64_t val) { acpigen_write_store(); acpigen_write_integer(val); acpigen_emit_ext_op(DEBUG_OP); } /* Store (op, DEBUG) */ void acpigen_write_debug_op(uint8_t op) { acpigen_write_store(); acpigen_emit_byte(op); acpigen_emit_ext_op(DEBUG_OP); } /* Store (str, DEBUG) */ void acpigen_write_debug_namestr(const char *str) { acpigen_write_store(); acpigen_emit_namestring(str); acpigen_emit_ext_op(DEBUG_OP); } /* Concatenate (str1, res, tmp_res) Store(tmp_res, DEBUG) */ void acpigen_write_debug_concatenate_string_op(const char *str, uint8_t res, uint8_t tmp_res) { acpigen_concatenate_string_op(str, res, tmp_res); acpigen_write_debug_op(tmp_res); } static void acpigen_tx_byte(unsigned char byte, void *data) { acpigen_emit_byte(byte); } /* Store("formatted string", DEBUG) */ void acpigen_write_debug_sprintf(const char *fmt, ...) { va_list args; acpigen_write_store(); acpigen_emit_byte(STRING_PREFIX); va_start(args, fmt); vtxprintf(acpigen_tx_byte, fmt, args, NULL); va_end(args); acpigen_emit_byte('\0'); acpigen_emit_ext_op(DEBUG_OP); } void acpigen_write_if(void) { acpigen_emit_byte(IF_OP); acpigen_write_len_f(); } /* If (And (arg1, arg2)) */ void acpigen_write_if_and(uint8_t arg1, uint8_t arg2) { acpigen_write_if(); acpigen_emit_byte(AND_OP); acpigen_emit_byte(arg1); acpigen_emit_byte(arg2); } /* * Generates ACPI code for checking if operand1 and operand2 are equal. * Both operand1 and operand2 are ACPI ops. * * If (Lequal (op,1 op2)) */ void acpigen_write_if_lequal_op_op(uint8_t op1, uint8_t op2) { acpigen_write_if(); acpigen_emit_byte(LEQUAL_OP); acpigen_emit_byte(op1); acpigen_emit_byte(op2); } /* * Generates ACPI code for checking if operand1 is greater than operand2. * Both operand1 and operand2 are ACPI ops. * * If (Lgreater (op1 op2)) */ void acpigen_write_if_lgreater_op_op(uint8_t op1, uint8_t op2) { acpigen_write_if(); acpigen_emit_byte(LGREATER_OP); acpigen_emit_byte(op1); acpigen_emit_byte(op2); } /* * Generates ACPI code for checking if operand1 and operand2 are equal, where, * operand1 is ACPI op and operand2 is an integer. * * If (Lequal (op, val)) */ void acpigen_write_if_lequal_op_int(uint8_t op, uint64_t val) { acpigen_write_if(); acpigen_emit_byte(LEQUAL_OP); acpigen_emit_byte(op); acpigen_write_integer(val); } /* * Generates ACPI code for checking if operand is greater than the value, where, * operand is ACPI op and val is an integer. * * If (Lgreater (op, val)) */ void acpigen_write_if_lgreater_op_int(uint8_t op, uint64_t val) { acpigen_write_if(); acpigen_emit_byte(LGREATER_OP); acpigen_emit_byte(op); acpigen_write_integer(val); } /* * Generates ACPI code for checking if operand1 and operand2 are equal, where, * operand1 is namestring and operand2 is an integer. * * If (Lequal ("namestr", val)) */ void acpigen_write_if_lequal_namestr_int(const char *namestr, uint64_t val) { acpigen_write_if(); acpigen_emit_byte(LEQUAL_OP); acpigen_emit_namestring(namestr); acpigen_write_integer(val); } /* * Generates ACPI code for checking if operand1 and operand2 are equal, where, * operand1 is namestring and operand2 is an integer. * * If (Lgreater ("namestr", val)) */ void acpigen_write_if_lgreater_namestr_int(const char *namestr, uint64_t val) { acpigen_write_if(); acpigen_emit_byte(LGREATER_OP); acpigen_emit_namestring(namestr); acpigen_write_integer(val); } /* * Generates ACPI code to check at runtime if an object named `namestring` * exists, and leaves the If scope open to continue execute code when this * is true. NOTE: Requires matching acpigen_write_if_end(). * * If (CondRefOf (NAME)) */ void acpigen_write_if_cond_ref_of(const char *namestring) { acpigen_write_if(); acpigen_emit_ext_op(COND_REFOF_OP); acpigen_emit_namestring(namestring); acpigen_emit_byte(ZERO_OP); /* ignore COND_REFOF_OP destination */ } /* Closes previously opened if statement and generates ACPI code for else statement. */ void acpigen_write_else(void) { acpigen_pop_len(); acpigen_emit_byte(ELSE_OP); acpigen_write_len_f(); } void acpigen_write_shiftleft_op_int(uint8_t src_result, uint64_t count) { acpigen_emit_byte(SHIFT_LEFT_OP); acpigen_emit_byte(src_result); acpigen_write_integer(count); acpigen_emit_byte(ZERO_OP); } void acpigen_write_to_buffer(uint8_t src, uint8_t dst) { acpigen_emit_byte(TO_BUFFER_OP); acpigen_emit_byte(src); acpigen_emit_byte(dst); } void acpigen_write_to_integer(uint8_t src, uint8_t dst) { acpigen_emit_byte(TO_INTEGER_OP); acpigen_emit_byte(src); acpigen_emit_byte(dst); } void acpigen_write_to_integer_from_namestring(const char *source, uint8_t dst_op) { acpigen_emit_byte(TO_INTEGER_OP); acpigen_emit_namestring(source); acpigen_emit_byte(dst_op); } void acpigen_write_byte_buffer(uint8_t *arr, size_t size) { size_t i; acpigen_emit_byte(BUFFER_OP); acpigen_write_len_f(); acpigen_write_integer(size); for (i = 0; i < size; i++) acpigen_emit_byte(arr[i]); acpigen_pop_len(); } void acpigen_write_return_byte_buffer(uint8_t *arr, size_t size) { acpigen_emit_byte(RETURN_OP); acpigen_write_byte_buffer(arr, size); } void acpigen_write_return_singleton_buffer(uint8_t arg) { acpigen_write_return_byte_buffer(&arg, 1); } void acpigen_write_return_op(uint8_t arg) { acpigen_emit_byte(RETURN_OP); acpigen_emit_byte(arg); } void acpigen_write_return_byte(uint8_t arg) { acpigen_emit_byte(RETURN_OP); acpigen_write_byte(arg); } void acpigen_write_return_integer(uint64_t arg) { acpigen_emit_byte(RETURN_OP); acpigen_write_integer(arg); } void acpigen_write_return_namestr(const char *arg) { acpigen_emit_byte(RETURN_OP); acpigen_emit_namestring(arg); } void acpigen_write_return_string(const char *arg) { acpigen_emit_byte(RETURN_OP); acpigen_write_string(arg); } void acpigen_write_upc(enum acpi_upc_type type) { acpigen_write_name("_UPC"); acpigen_write_package(4); /* Connectable */ acpigen_write_byte(type == UPC_TYPE_UNUSED ? 0 : 0xff); /* Type */ acpigen_write_byte(type); /* Reserved0 */ acpigen_write_zero(); /* Reserved1 */ acpigen_write_zero(); acpigen_pop_len(); } void acpigen_write_pld(const struct acpi_pld *pld) { uint8_t buf[20]; if (acpi_pld_to_buffer(pld, buf, ARRAY_SIZE(buf)) < 0) return; acpigen_write_name("_PLD"); acpigen_write_package(1); acpigen_write_byte_buffer(buf, ARRAY_SIZE(buf)); acpigen_pop_len(); } void acpigen_write_dsm(const char *uuid, void (**callbacks)(void *), size_t count, void *arg) { struct dsm_uuid id = DSM_UUID(uuid, callbacks, count, arg); acpigen_write_dsm_uuid_arr(&id, 1); } /* * Create a supported functions bitmask * bit 0: other functions than 0 are supported * bits 1-x: function x supported */ /* On GCC aarch64 the compiler is worried about alloca() having unbounded stack usage. */ #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic ignored "-Wstack-usage=" #endif static void acpigen_dsm_uuid_enum_functions(const struct dsm_uuid *id) { const size_t bytes = DIV_ROUND_UP(id->count, BITS_PER_BYTE); uint8_t *buffer = alloca(bytes); bool set = false; size_t cb_idx = 0; memset(buffer, 0, bytes); for (size_t i = 0; i < bytes; i++) { for (size_t j = 0; j < BITS_PER_BYTE; j++) { if (cb_idx >= id->count) break; if (id->callbacks[cb_idx++]) { set = true; buffer[i] |= BIT(j); } } } if (set) buffer[0] |= BIT(0); acpigen_write_return_byte_buffer(buffer, bytes); } static void acpigen_write_dsm_uuid(struct dsm_uuid *id) { size_t i; /* If (LEqual (Local0, ToUUID(uuid))) */ acpigen_write_if(); acpigen_emit_byte(LEQUAL_OP); acpigen_emit_byte(LOCAL0_OP); acpigen_write_uuid(id->uuid); /* ToInteger (Arg2, Local1) */ acpigen_write_to_integer(ARG2_OP, LOCAL1_OP); /* If (LEqual(Local1, 0)) */ { acpigen_write_if_lequal_op_int(LOCAL1_OP, 0); if (id->callbacks[0]) id->callbacks[0](id->arg); else if (id->count) acpigen_dsm_uuid_enum_functions(id); acpigen_write_if_end(); } for (i = 1; i < id->count; i++) { /* If (LEqual (Local1, i)) */ acpigen_write_if_lequal_op_int(LOCAL1_OP, i); /* Callback to write if handler. */ if (id->callbacks[i]) id->callbacks[i](id->arg); acpigen_write_if_end(); /* If */ } /* Default case: Return (Buffer (One) { 0x0 }) */ acpigen_write_return_singleton_buffer(0x0); acpigen_write_if_end(); /* If (LEqual (Local0, ToUUID(uuid))) */ } /* * Generate ACPI AML code for _DSM method. * This function takes as input array of uuid for the device, set of callbacks * and argument to pass into the callbacks. Callbacks should ensure that Local0 * and Local1 are left untouched. Use of Local2-Local7 is permitted in * callbacks. * * Arguments passed into _DSM method: * Arg0 = UUID * Arg1 = Revision * Arg2 = Function index * Arg3 = Function specific arguments * * AML code generated would look like: * Method (_DSM, 4, Serialized) { * ToBuffer (Arg0, Local0) * If (LEqual (Local0, ToUUID(uuid))) { * ToInteger (Arg2, Local1) * If (LEqual (Local1, 0)) { * <acpigen by callback[0]> * } * ... * If (LEqual (Local1, n)) { * <acpigen by callback[n]> * } * Return (Buffer (One) { 0x0 }) * } * ... * If (LEqual (Local0, ToUUID(uuidn))) { * ... * } * Return (Buffer (One) { 0x0 }) * } */ void acpigen_write_dsm_uuid_arr(struct dsm_uuid *ids, size_t count) { size_t i; /* Method (_DSM, 4, Serialized) */ acpigen_write_method_serialized("_DSM", 0x4); /* ToBuffer (Arg0, Local0) */ acpigen_write_to_buffer(ARG0_OP, LOCAL0_OP); for (i = 0; i < count; i++) acpigen_write_dsm_uuid(&ids[i]); /* Return (Buffer (One) { 0x0 }) */ acpigen_write_return_singleton_buffer(0x0); acpigen_pop_len(); /* Method _DSM */ } void acpigen_write_CPPC_package(const struct cppc_config *config) { u32 i; u32 max; switch (config->version) { case 1: max = CPPC_MAX_FIELDS_VER_1; break; case 2: max = CPPC_MAX_FIELDS_VER_2; break; case 3: max = CPPC_MAX_FIELDS_VER_3; break; default: printk(BIOS_ERR, "CPPC version %u is not implemented\n", config->version); return; } acpigen_write_name(CPPC_PACKAGE_NAME); /* Adding 2 to account for length and version fields */ acpigen_write_package(max + 2); acpigen_write_dword(max + 2); acpigen_write_byte(config->version); for (i = 0; i < max; ++i) { const cppc_entry_t *entry = &config->entries[i]; if (entry->type == CPPC_TYPE_DWORD) acpigen_write_dword(entry->dword); else acpigen_write_register_resource(&entry->reg); } acpigen_pop_len(); } void acpigen_write_CPPC_method(void) { char pscope[16]; snprintf(pscope, sizeof(pscope), "\\_SB." CONFIG_ACPI_CPU_STRING "." CPPC_PACKAGE_NAME, 0); acpigen_write_method("_CPC", 0); acpigen_emit_byte(RETURN_OP); acpigen_emit_namestring(pscope); acpigen_pop_len(); } /* * Generate ACPI AML code for _ROM method. * This function takes as input ROM data and ROM length. * * The ACPI spec isn't clear about what should happen at the end of the * ROM. Tests showed that it shouldn't truncate, but fill the remaining * bytes in the returned buffer with zeros. * * Arguments passed into _DSM method: * Arg0 = Offset in Bytes * Arg1 = Bytes to return * * Example: * acpigen_write_rom(0xdeadbeef, 0x10000) * * AML code generated would look like: * Method (_ROM, 2, NotSerialized) { * * OperationRegion("ROMS", SYSTEMMEMORY, 0xdeadbeef, 0x10000) * Field (ROMS, AnyAcc, NoLock, Preserve) * { * Offset (0), * RBF0, 0x80000 * } * * Store (Arg0, Local0) * Store (Arg1, Local1) * * If (LGreater (Local1, 0x1000)) * { * Store (0x1000, Local1) * } * * Store (Local1, Local3) * * If (LGreater (Local0, 0x10000)) * { * Return(Buffer(Local1){0}) * } * * If (LGreater (Local0, 0x0f000)) * { * Subtract (0x10000, Local0, Local2) * If (LGreater (Local1, Local2)) * { * Store (Local2, Local1) * } * } * * Name (ROM1, Buffer (Local3) {0}) * * Multiply (Local0, 0x08, Local0) * Multiply (Local1, 0x08, Local1) * * CreateField (RBF0, Local0, Local1, TMPB) * Store (TMPB, ROM1) * Return (ROM1) * } */ void acpigen_write_rom(void *bios, const size_t length) { ASSERT(bios) ASSERT(length) /* Method (_ROM, 2, Serialized) */ acpigen_write_method_serialized("_ROM", 2); /* OperationRegion("ROMS", SYSTEMMEMORY, current, length) */ struct opregion opreg = OPREGION("ROMS", SYSTEMMEMORY, (uintptr_t)bios, length); acpigen_write_opregion(&opreg); struct fieldlist l[] = { FIELDLIST_OFFSET(0), FIELDLIST_NAMESTR("RBF0", 8 * length), }; /* Field (ROMS, AnyAcc, NoLock, Preserve) * { * Offset (0), * RBF0, 0x80000 * } */ acpigen_write_field(opreg.name, l, 2, FIELD_ANYACC | FIELD_NOLOCK | FIELD_PRESERVE); /* Store (Arg0, Local0) */ acpigen_write_store_ops(ARG0_OP, LOCAL0_OP); /* Store (Arg1, Local1) */ acpigen_write_store_ops(ARG1_OP, LOCAL1_OP); /* ACPI SPEC requires to return at maximum 4KiB */ /* If (LGreater (Local1, 0x1000)) */ acpigen_write_if_lgreater_op_int(LOCAL1_OP, 0x1000); /* Store (0x1000, Local1) */ acpigen_write_store_int_to_op(0x1000, LOCAL1_OP); /* Pop if */ acpigen_pop_len(); /* Store (Local1, Local3) */ acpigen_write_store_ops(LOCAL1_OP, LOCAL3_OP); /* If (LGreater (Local0, length)) */ acpigen_write_if_lgreater_op_int(LOCAL0_OP, length); /* Return(Buffer(Local1){0}) */ acpigen_emit_byte(RETURN_OP); acpigen_emit_byte(BUFFER_OP); acpigen_write_len_f(); acpigen_emit_byte(LOCAL1_OP); acpigen_emit_byte(0); acpigen_pop_len(); /* Pop if */ acpigen_pop_len(); /* If (LGreater (Local0, length - 4096)) */ acpigen_write_if_lgreater_op_int(LOCAL0_OP, length - 4096); /* Subtract (length, Local0, Local2) */ acpigen_emit_byte(SUBTRACT_OP); acpigen_write_integer(length); acpigen_emit_byte(LOCAL0_OP); acpigen_emit_byte(LOCAL2_OP); /* If (LGreater (Local1, Local2)) */ acpigen_write_if_lgreater_op_op(LOCAL1_OP, LOCAL2_OP); /* Store (Local2, Local1) */ acpigen_write_store_ops(LOCAL2_OP, LOCAL1_OP); /* Pop if */ acpigen_pop_len(); /* Pop if */ acpigen_pop_len(); /* Name (ROM1, Buffer (Local3) {0}) */ acpigen_write_name("ROM1"); acpigen_emit_byte(BUFFER_OP); acpigen_write_len_f(); acpigen_emit_byte(LOCAL3_OP); acpigen_emit_byte(0); acpigen_pop_len(); /* Multiply (Local1, 0x08, Local1) */ acpigen_emit_byte(MULTIPLY_OP); acpigen_emit_byte(LOCAL1_OP); acpigen_write_integer(0x08); acpigen_emit_byte(LOCAL1_OP); /* Multiply (Local0, 0x08, Local0) */ acpigen_emit_byte(MULTIPLY_OP); acpigen_emit_byte(LOCAL0_OP); acpigen_write_integer(0x08); acpigen_emit_byte(LOCAL0_OP); /* CreateField (RBF0, Local0, Local1, TMPB) */ acpigen_emit_ext_op(CREATEFIELD_OP); acpigen_emit_namestring("RBF0"); acpigen_emit_byte(LOCAL0_OP); acpigen_emit_byte(LOCAL1_OP); acpigen_emit_namestring("TMPB"); /* Store (TMPB, ROM1) */ acpigen_write_store_namestr_to_namestr("TMPB", "ROM1"); /* Return (ROM1) */ acpigen_emit_byte(RETURN_OP); acpigen_emit_namestring("ROM1"); /* Pop method */ acpigen_pop_len(); } /* * Helper functions for enabling/disabling Tx GPIOs based on the GPIO * polarity. These functions end up calling acpigen_soc_{set,clear}_tx_gpio to * make callbacks into SoC acpigen code. * * Returns 0 on success and -1 on error. */ int acpigen_enable_tx_gpio(const struct acpi_gpio *gpio) { if (gpio->active_low) return acpigen_soc_clear_tx_gpio(gpio->pins[0]); else return acpigen_soc_set_tx_gpio(gpio->pins[0]); } int acpigen_disable_tx_gpio(const struct acpi_gpio *gpio) { if (gpio->active_low) return acpigen_soc_set_tx_gpio(gpio->pins[0]); else return acpigen_soc_clear_tx_gpio(gpio->pins[0]); } void acpigen_get_rx_gpio(const struct acpi_gpio *gpio) { acpigen_soc_read_rx_gpio(gpio->pins[0]); if (gpio->active_low) acpigen_write_xor(LOCAL0_OP, 1, LOCAL0_OP); } void acpigen_get_tx_gpio(const struct acpi_gpio *gpio) { acpigen_soc_get_tx_gpio(gpio->pins[0]); if (gpio->active_low) acpigen_write_xor(LOCAL0_OP, 1, LOCAL0_OP); } /* refer to ACPI 6.4.3.5.3 Word Address Space Descriptor section for details */ void acpigen_resource_word(u16 res_type, u16 gen_flags, u16 type_flags, u16 gran, u16 range_min, u16 range_max, u16 translation, u16 length) { /* Byte 0: Type 1, Large Item Value 0x8: Word Address Space Descriptor */ acpigen_emit_byte(0x88); /* Byte 1+2: length (0x000d) */ acpigen_emit_byte(0x0d); acpigen_emit_byte(0x00); /* resource type */ acpigen_emit_byte(res_type); // 0 - mem, 1 - io, 2 - bus /* general flags */ acpigen_emit_byte(gen_flags); /* type flags */ // refer to ACPI Table 6-234 (Memory), 6-235 (IO), 6-236 (Bus) for details acpigen_emit_byte(type_flags); /* granularity, min, max, translation, length */ acpigen_emit_word(gran); acpigen_emit_word(range_min); acpigen_emit_word(range_max); acpigen_emit_word(translation); acpigen_emit_word(length); } /* refer to ACPI 6.4.3.5.2 DWord Address Space Descriptor section for details */ void acpigen_resource_dword(u16 res_type, u16 gen_flags, u16 type_flags, u32 gran, u32 range_min, u32 range_max, u32 translation, u32 length) { /* Byte 0: Type 1, Large Item Value 0x7: DWord Address Space Descriptor */ acpigen_emit_byte(0x87); /* Byte 1+2: length (0023) */ acpigen_emit_byte(23); acpigen_emit_byte(0x00); /* resource type */ acpigen_emit_byte(res_type); // 0 - mem, 1 - io, 2 - bus /* general flags */ acpigen_emit_byte(gen_flags); /* type flags */ // refer to ACPI Table 6-234 (Memory), 6-235 (IO), 6-236 (Bus) for details acpigen_emit_byte(type_flags); /* granularity, min, max, translation, length */ acpigen_emit_dword(gran); acpigen_emit_dword(range_min); acpigen_emit_dword(range_max); acpigen_emit_dword(translation); acpigen_emit_dword(length); } static void acpigen_emit_qword(u64 data) { acpigen_emit_dword(data & 0xffffffff); acpigen_emit_dword((data >> 32) & 0xffffffff); } /* refer to ACPI 6.4.3.5.1 QWord Address Space Descriptor section for details */ void acpigen_resource_qword(u16 res_type, u16 gen_flags, u16 type_flags, u64 gran, u64 range_min, u64 range_max, u64 translation, u64 length) { /* Byte 0: Type 1, Large Item Value 0xa: QWord Address Space Descriptor */ acpigen_emit_byte(0x8a); /* Byte 1+2: length (0x002b) */ acpigen_emit_byte(0x2b); acpigen_emit_byte(0x00); /* resource type */ acpigen_emit_byte(res_type); // 0 - mem, 1 - io, 2 - bus /* general flags */ acpigen_emit_byte(gen_flags); /* type flags */ // refer to ACPI Table 6-234 (Memory), 6-235 (IO), 6-236 (Bus) for details acpigen_emit_byte(type_flags); /* granularity, min, max, translation, length */ acpigen_emit_qword(gran); acpigen_emit_qword(range_min); acpigen_emit_qword(range_max); acpigen_emit_qword(translation); acpigen_emit_qword(length); } void acpigen_resource_producer_bus_number(u16 bus_base, u16 bus_limit) { acpigen_resource_word(RSRC_TYPE_BUS, /* res_type */ ADDR_SPACE_GENERAL_FLAG_MAX_FIXED | ADDR_SPACE_GENERAL_FLAG_MIN_FIXED | ADDR_SPACE_GENERAL_FLAG_DEC_POS | ADDR_SPACE_GENERAL_FLAG_PRODUCER, /* gen_flags */ BUS_NUM_RANGE_RESOURCE_FLAG, /* type_flags */ 0, /* gran */ bus_base, /* range_min */ bus_limit, /* range_max */ 0x0, /* translation */ bus_limit - bus_base + 1); /* length */ } void acpigen_resource_producer_io(u16 io_base, u16 io_limit) { acpigen_resource_dword(RSRC_TYPE_IO, /* res_type */ ADDR_SPACE_GENERAL_FLAG_MAX_FIXED | ADDR_SPACE_GENERAL_FLAG_MIN_FIXED | ADDR_SPACE_GENERAL_FLAG_DEC_POS | ADDR_SPACE_GENERAL_FLAG_PRODUCER, /* gen_flags */ IO_RSRC_FLAG_ENTIRE_RANGE, /* type_flags */ 0, /* gran */ io_base, /* range_min */ io_limit, /* range_max */ 0x0, /* translation */ io_limit - io_base + 1); /* length */ } static void acpigen_resource_mmio32(u32 mmio_base, u32 mmio_limit, u16 gen_flags, u16 type_flags) { acpigen_resource_dword(RSRC_TYPE_MEM, /* res_type */ gen_flags, /* gen_flags */ type_flags, /* type_flags */ 0, /* gran */ mmio_base, /* range_min */ mmio_limit, /* range_max */ 0x0, /* translation */ mmio_limit - mmio_base + 1); /* length */ } static void acpigen_resource_mmio64(u64 mmio_base, u64 mmio_limit, u16 gen_flags, u16 type_flags) { acpigen_resource_qword(RSRC_TYPE_MEM, /* res_type */ gen_flags, /* gen_flags */ type_flags, /* type_flags */ 0, /* gran */ mmio_base, /* range_min */ mmio_limit, /* range_max */ 0x0, /* translation */ mmio_limit - mmio_base + 1); /* length */ } static void acpigen_resource_mmio(u64 mmio_base, u64 mmio_limit, bool is_producer, u16 type_flags) { const u16 gen_flags = ADDR_SPACE_GENERAL_FLAG_MAX_FIXED | ADDR_SPACE_GENERAL_FLAG_MIN_FIXED | ADDR_SPACE_GENERAL_FLAG_DEC_POS | (is_producer ? ADDR_SPACE_GENERAL_FLAG_PRODUCER : ADDR_SPACE_GENERAL_FLAG_CONSUMER); if (mmio_base < 4ULL * GiB && mmio_limit < 4ULL * GiB) acpigen_resource_mmio32(mmio_base, mmio_limit, gen_flags, type_flags); else acpigen_resource_mmio64(mmio_base, mmio_limit, gen_flags, type_flags); } void acpigen_resource_producer_mmio(u64 mmio_base, u64 mmio_limit, u16 type_flags) { acpigen_resource_mmio(mmio_base, mmio_limit, true, type_flags); } void acpigen_resource_consumer_mmio(u64 mmio_base, u64 mmio_limit, u16 type_flags) { acpigen_resource_mmio(mmio_base, mmio_limit, false, type_flags); } void acpigen_write_ADR(uint64_t adr) { acpigen_write_name_qword("_ADR", adr); } /** * acpigen_write_ADR_soundwire_device() - SoundWire ACPI Device Address Encoding. * @address: SoundWire device address properties. * * From SoundWire Discovery and Configuration Specification Version 1.0 Table 3. * * 63..52 - Reserved (0) * 51..48 - Zero-based SoundWire Link ID, relative to the immediate parent. * Used when a Controller has multiple master devices, each producing a * separate SoundWire Link. Set to 0 for single-link controllers. * 47..0 - SoundWire Device ID Encoding from specification version 1.2 table 88 * 47..44 - SoundWire specification version that this device supports * 43..40 - Unique ID for multiple devices * 39..24 - MIPI standard manufacturer code * 23..08 - Vendor defined part ID * 07..00 - MIPI class encoding */ void acpigen_write_ADR_soundwire_device(const struct soundwire_address *address) { acpigen_write_ADR((((uint64_t)address->link_id & 0xf) << 48) | (((uint64_t)address->version & 0xf) << 44) | (((uint64_t)address->unique_id & 0xf) << 40) | (((uint64_t)address->manufacturer_id & 0xffff) << 24) | (((uint64_t)address->part_id & 0xffff) << 8) | (((uint64_t)address->class & 0xff))); } void acpigen_notify(const char *namestr, int value) { acpigen_emit_byte(NOTIFY_OP); acpigen_emit_namestring(namestr); acpigen_write_integer(value); } static void _create_field(uint8_t aml_op, uint8_t srcop, size_t byte_offset, const char *name) { acpigen_emit_byte(aml_op); acpigen_emit_byte(srcop); acpigen_write_integer(byte_offset); acpigen_emit_namestring(name); } void acpigen_write_create_byte_field(uint8_t op, size_t byte_offset, const char *name) { _create_field(CREATE_BYTE_OP, op, byte_offset, name); } void acpigen_write_create_word_field(uint8_t op, size_t byte_offset, const char *name) { _create_field(CREATE_WORD_OP, op, byte_offset, name); } void acpigen_write_create_dword_field(uint8_t op, size_t byte_offset, const char *name) { _create_field(CREATE_DWORD_OP, op, byte_offset, name); } void acpigen_write_create_qword_field(uint8_t op, size_t byte_offset, const char *name) { _create_field(CREATE_QWORD_OP, op, byte_offset, name); } void acpigen_write_pct_package(const acpi_addr_t *perf_ctrl, const acpi_addr_t *perf_sts) { acpigen_write_name("_PCT"); acpigen_write_package(0x02); acpigen_write_register_resource(perf_ctrl); acpigen_write_register_resource(perf_sts); acpigen_pop_len(); } void acpigen_write_xpss_package(const struct acpi_xpss_sw_pstate *pstate_value) { acpigen_write_package(0x08); acpigen_write_dword(pstate_value->core_freq); acpigen_write_dword(pstate_value->power); acpigen_write_dword(pstate_value->transition_latency); acpigen_write_dword(pstate_value->bus_master_latency); acpigen_write_byte_buffer((uint8_t *)&pstate_value->control_value, sizeof(uint64_t)); acpigen_write_byte_buffer((uint8_t *)&pstate_value->status_value, sizeof(uint64_t)); acpigen_write_byte_buffer((uint8_t *)&pstate_value->control_mask, sizeof(uint64_t)); acpigen_write_byte_buffer((uint8_t *)&pstate_value->status_mask, sizeof(uint64_t)); acpigen_pop_len(); } void acpigen_write_xpss_object(const struct acpi_xpss_sw_pstate *pstate_values, size_t nentries) { size_t pstate; acpigen_write_name("XPSS"); acpigen_write_package(nentries); for (pstate = 0; pstate < nentries; pstate++) { acpigen_write_xpss_package(pstate_values); pstate_values++; } acpigen_pop_len(); } /* Delay up to wait_ms until provided namestr matches expected value. */ void acpigen_write_delay_until_namestr_int(uint32_t wait_ms, const char *name, uint64_t value) { uint32_t wait_ms_segment = 1; uint32_t segments = wait_ms; /* Sleep in 2ms segments if delay is more than 2ms. */ if (wait_ms > 2) { wait_ms_segment = 2; segments = wait_ms / wait_ms_segment; } acpigen_write_store_int_to_op(segments, LOCAL7_OP); acpigen_emit_byte(WHILE_OP); acpigen_write_len_f(); acpigen_emit_byte(LGREATER_OP); acpigen_emit_byte(LOCAL7_OP); acpigen_emit_byte(ZERO_OP); /* If name is not provided then just delay in a loop. */ if (name) { acpigen_write_if_lequal_namestr_int(name, value); acpigen_emit_byte(BREAK_OP); acpigen_pop_len(); /* If */ } acpigen_write_sleep(wait_ms_segment); acpigen_emit_byte(DECREMENT_OP); acpigen_emit_byte(LOCAL7_OP); acpigen_pop_len(); /* While */ if (name) { acpigen_write_if_lequal_op_op(LOCAL7_OP, ZERO_OP); acpigen_write_debug_sprintf("WARN: Wait loop timeout for variable %s", name); acpigen_pop_len(); /* If */ } } void acpigen_ssdt_override_sleep_states(bool enable_s1, bool enable_s2, bool enable_s3, bool enable_s4) { assert(!(enable_s1 && CONFIG(ACPI_S1_NOT_SUPPORTED))); assert(!(enable_s3 && !CONFIG(HAVE_ACPI_RESUME))); assert(!(enable_s4 && CONFIG(DISABLE_ACPI_HIBERNATE))); acpigen_write_scope("\\"); uint32_t sleep_enable = (enable_s1 << 0) | (enable_s2 << 1) | (enable_s3 << 2) | (enable_s4 << 3); acpigen_write_name_dword("OSFG", sleep_enable); acpigen_pop_len(); }