/* SPDX-License-Identifier: GPL-2.0-only */ /* * coreboot ACPI Table support */ /* * Each system port implementing ACPI has to provide two functions: * * write_acpi_tables() * acpi_dump_apics() * * See Kontron 986LCD-M port for a good example of an ACPI implementation * in coreboot. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static acpi_rsdp_t *valid_rsdp(acpi_rsdp_t *rsdp); u8 acpi_checksum(u8 *table, u32 length) { u8 ret = 0; while (length--) { ret += *table; table++; } return -ret; } /** * Add an ACPI table to the RSDT (and XSDT) structure, recalculate length * and checksum. */ void acpi_add_table(acpi_rsdp_t *rsdp, void *table) { int i, entries_num; acpi_rsdt_t *rsdt; acpi_xsdt_t *xsdt; /* The 32bit RSDT may not be valid if tables live above 4GiB */ rsdt = (acpi_rsdt_t *)(uintptr_t)rsdp->rsdt_address; xsdt = (acpi_xsdt_t *)(uintptr_t)rsdp->xsdt_address; /* This should always be MAX_ACPI_TABLES. */ entries_num = ARRAY_SIZE(xsdt->entry); for (i = 0; i < entries_num; i++) { if (xsdt->entry[i] == 0) break; } if (i >= entries_num) { printk(BIOS_ERR, "ACPI: Error: Could not add ACPI table, " "too many tables.\n"); return; } /* Add table to the XSDT. */ xsdt->entry[i] = (u64)(uintptr_t)table; /* Fix XSDT length or the kernel will assume invalid entries. */ xsdt->header.length = sizeof(acpi_header_t) + (sizeof(u64) * (i + 1)); /* Re-calculate checksum. */ xsdt->header.checksum = 0; /* Hope this won't get optimized away */ xsdt->header.checksum = acpi_checksum((u8 *)xsdt, xsdt->header.length); /* * And now the same thing for the RSDT. We use the same index as for * now we want the XSDT and RSDT to always be in sync in coreboot. */ if (rsdt && (uintptr_t)table < UINT32_MAX) { /* Add table to the RSDT. */ rsdt->entry[i] = (u32)(uintptr_t)table; /* Fix RSDT length. */ rsdt->header.length = sizeof(acpi_header_t) + (sizeof(u32) * (i + 1)); /* Re-calculate checksum. */ rsdt->header.checksum = 0; rsdt->header.checksum = acpi_checksum((u8 *)rsdt, rsdt->header.length); } printk(BIOS_DEBUG, "ACPI: added table %d/%d, length now %d\n", i + 1, entries_num, xsdt->header.length); } static enum cb_err acpi_fill_header(acpi_header_t *header, const char name[4], enum acpi_tables table, uint32_t size) { if (!header) return CB_ERR; /* Fill out header fields. */ memcpy(header->signature, name, 4); memcpy(header->oem_id, OEM_ID, 6); memcpy(header->oem_table_id, ACPI_TABLE_CREATOR, 8); memcpy(header->asl_compiler_id, ASLC, 4); header->asl_compiler_revision = asl_revision; header->revision = get_acpi_table_revision(table); header->length = size; return CB_SUCCESS; } static int acpi_create_mcfg_mmconfig(acpi_mcfg_mmconfig_t *mmconfig, u64 base, u16 seg_nr, u8 start, u8 end) { memset(mmconfig, 0, sizeof(*mmconfig)); mmconfig->base_address = base; mmconfig->pci_segment_group_number = seg_nr; mmconfig->start_bus_number = start; mmconfig->end_bus_number = end; return sizeof(acpi_mcfg_mmconfig_t); } static void acpi_create_madt(acpi_header_t *header, void *unused) { acpi_madt_t *madt = (acpi_madt_t *)header; unsigned long current = (unsigned long)madt + sizeof(acpi_madt_t); if (acpi_fill_header(header, "APIC", MADT, sizeof(acpi_madt_t)) != CB_SUCCESS) return; current = acpi_arch_fill_madt(madt, current); if (CONFIG(ACPI_CUSTOM_MADT)) current = acpi_fill_madt(current); /* (Re)calculate length . */ header->length = current - (unsigned long)madt; } static unsigned long acpi_fill_mcfg(unsigned long current) { for (int i = 0; i < PCI_SEGMENT_GROUP_COUNT; i++) { current += acpi_create_mcfg_mmconfig((acpi_mcfg_mmconfig_t *)current, CONFIG_ECAM_MMCONF_BASE_ADDRESS + i * PCI_PER_SEGMENT_GROUP_ECAM_SIZE, i, 0, PCI_BUSES_PER_SEGMENT_GROUP - 1); } return current; } /* MCFG is defined in the PCI Firmware Specification 3.0. */ static void acpi_create_mcfg(acpi_header_t *header, void *unused) { acpi_mcfg_t *mcfg = (acpi_mcfg_t *)header; unsigned long current = (unsigned long)mcfg + sizeof(acpi_mcfg_t); if (acpi_fill_header(header, "MCFG", MCFG, sizeof(acpi_mcfg_t)) != CB_SUCCESS) return; if (CONFIG(ECAM_MMCONF_SUPPORT)) current = acpi_fill_mcfg(current); /* (Re)calculate length */ header->length = current - (unsigned long)mcfg; } static void *get_tcpa_log(u32 *size) { const struct cbmem_entry *ce; const u32 tcpa_default_log_len = 0x10000; void *lasa; ce = cbmem_entry_find(CBMEM_ID_TCPA_TCG_LOG); if (ce) { lasa = cbmem_entry_start(ce); *size = cbmem_entry_size(ce); printk(BIOS_DEBUG, "TCPA log found at %p\n", lasa); return lasa; } lasa = cbmem_add(CBMEM_ID_TCPA_TCG_LOG, tcpa_default_log_len); if (!lasa) { printk(BIOS_ERR, "TCPA log creation failed\n"); return NULL; } printk(BIOS_DEBUG, "TCPA log created at %p\n", lasa); memset(lasa, 0, tcpa_default_log_len); *size = tcpa_default_log_len; return lasa; } static void acpi_create_tcpa(acpi_header_t *header, void *unused) { if (!CONFIG(TPM1)) return; acpi_tcpa_t *tcpa = (acpi_tcpa_t *)header; u32 tcpa_log_len; void *lasa; lasa = get_tcpa_log(&tcpa_log_len); if (!lasa) return; if (acpi_fill_header(header, "TCPA", TCPA, sizeof(acpi_tcpa_t)) != CB_SUCCESS) return; tcpa->platform_class = 0; tcpa->laml = tcpa_log_len; tcpa->lasa = (uintptr_t)lasa; } static void *get_tpm2_log(u32 *size) { const struct cbmem_entry *ce; const u32 tpm2_default_log_len = 0x10000; void *lasa; ce = cbmem_entry_find(CBMEM_ID_TPM2_TCG_LOG); if (ce) { lasa = cbmem_entry_start(ce); *size = cbmem_entry_size(ce); printk(BIOS_DEBUG, "TPM2 log found at %p\n", lasa); return lasa; } lasa = cbmem_add(CBMEM_ID_TPM2_TCG_LOG, tpm2_default_log_len); if (!lasa) { printk(BIOS_ERR, "TPM2 log creation failed\n"); return NULL; } printk(BIOS_DEBUG, "TPM2 log created at %p\n", lasa); memset(lasa, 0, tpm2_default_log_len); *size = tpm2_default_log_len; return lasa; } static void acpi_create_tpm2(acpi_header_t *header, void *unused) { if (!CONFIG(TPM2)) return; acpi_tpm2_t *tpm2 = (acpi_tpm2_t *)header; u32 tpm2_log_len; void *lasa; /* * Some payloads like SeaBIOS depend on log area to use TPM2. * Get the memory size and address of TPM2 log area or initialize it. */ lasa = get_tpm2_log(&tpm2_log_len); if (!lasa) tpm2_log_len = 0; if (acpi_fill_header(header, "TPM2", TPM2, sizeof(acpi_tpm2_t)) != CB_SUCCESS) return; /* Hard to detect for coreboot. Just set it to 0 */ tpm2->platform_class = 0; if (CONFIG(CRB_TPM)) { /* Must be set to 7 for CRB Support */ tpm2->control_area = CONFIG_CRB_TPM_BASE_ADDRESS + 0x40; tpm2->start_method = 7; } else { /* Must be set to 0 for FIFO interface support */ tpm2->control_area = 0; tpm2->start_method = 6; } memset(tpm2->msp, 0, sizeof(tpm2->msp)); /* Fill the log area size and start address fields. */ tpm2->laml = tpm2_log_len; tpm2->lasa = (uintptr_t)lasa; } static void acpi_ssdt_write_cbtable(void) { const struct cbmem_entry *cbtable; uintptr_t base; uint32_t size; cbtable = cbmem_entry_find(CBMEM_ID_CBTABLE); if (!cbtable) return; base = (uintptr_t)cbmem_entry_start(cbtable); size = cbmem_entry_size(cbtable); acpigen_write_device("CTBL"); acpigen_write_coreboot_hid(COREBOOT_ACPI_ID_CBTABLE); acpigen_write_name_integer("_UID", 0); acpigen_write_STA(ACPI_STATUS_DEVICE_ALL_ON); acpigen_write_name("_CRS"); acpigen_write_resourcetemplate_header(); acpigen_resource_consumer_mmio(base, base + size - 1, MEM_RSRC_FLAG_MEM_READ_ONLY | MEM_RSRC_FLAG_MEM_ATTR_CACHE); acpigen_write_resourcetemplate_footer(); acpigen_pop_len(); } static void acpi_create_ssdt_generator(acpi_header_t *ssdt, void *unused) { unsigned long current = (unsigned long)ssdt + sizeof(acpi_header_t); if (acpi_fill_header(ssdt, "SSDT", SSDT, sizeof(acpi_header_t)) != CB_SUCCESS) return; acpigen_set_current((char *)current); /* Write object to declare coreboot tables */ acpi_ssdt_write_cbtable(); { struct device *dev; for (dev = all_devices; dev; dev = dev->next) if (dev->enabled && dev->ops && dev->ops->acpi_fill_ssdt) dev->ops->acpi_fill_ssdt(dev); current = (unsigned long)acpigen_get_current(); } /* (Re)calculate length and checksum. */ ssdt->length = current - (unsigned long)ssdt; } int acpi_create_srat_mem(acpi_srat_mem_t *mem, u8 node, u32 basek, u32 sizek, u32 flags) { mem->type = 1; /* Memory affinity structure */ mem->length = sizeof(acpi_srat_mem_t); mem->base_address_low = (basek << 10); mem->base_address_high = (basek >> (32 - 10)); mem->length_low = (sizek << 10); mem->length_high = (sizek >> (32 - 10)); mem->proximity_domain = node; mem->flags = flags; return mem->length; } int acpi_create_srat_gia_pci(acpi_srat_gia_t *gia, u32 proximity_domain, u16 seg, u8 bus, u8 dev, u8 func, u32 flags) { gia->type = ACPI_SRAT_STRUCTURE_GIA; gia->length = sizeof(acpi_srat_gia_t); gia->proximity_domain = proximity_domain; gia->dev_handle_type = ACPI_SRAT_GIA_DEV_HANDLE_PCI; /* First two bytes has segment number */ memcpy(gia->dev_handle, &seg, 2); gia->dev_handle[2] = bus; /* Byte 2 has bus number */ /* Byte 3 has bits 7:3 for dev, bits 2:0 for func */ gia->dev_handle[3] = PCI_SLOT(dev) | PCI_FUNC(func); gia->flags = flags; return gia->length; } /* http://www.microsoft.com/whdc/system/sysinternals/sratdwn.mspx */ void acpi_create_srat(acpi_srat_t *srat, unsigned long (*acpi_fill_srat)(unsigned long current)) { acpi_header_t *header = &(srat->header); unsigned long current = (unsigned long)srat + sizeof(acpi_srat_t); memset((void *)srat, 0, sizeof(acpi_srat_t)); if (acpi_fill_header(header, "SRAT", SRAT, sizeof(acpi_srat_t)) != CB_SUCCESS) return; srat->resv = 1; /* Spec: Reserved to 1 for backwards compatibility. */ current = acpi_fill_srat(current); /* (Re)calculate length and checksum. */ header->length = current - (unsigned long)srat; header->checksum = acpi_checksum((void *)srat, header->length); } int acpi_create_cedt_chbs(acpi_cedt_chbs_t *chbs, u32 uid, u32 cxl_ver, u64 base) { memset((void *)chbs, 0, sizeof(acpi_cedt_chbs_t)); chbs->type = ACPI_CEDT_STRUCTURE_CHBS; chbs->length = sizeof(acpi_cedt_chbs_t); chbs->uid = uid; chbs->cxl_ver = cxl_ver; chbs->base = base; /* * CXL spec 2.0 section 9.14.1.2 "CXL CHBS" * CXL 1.1 spec compliant host bridge: 8KB * CXL 2.0 spec compliant host bridge: 64KB */ if (cxl_ver == ACPI_CEDT_CHBS_CXL_VER_1_1) chbs->len = 8 * KiB; else if (cxl_ver == ACPI_CEDT_CHBS_CXL_VER_2_0) chbs->len = 64 * KiB; else printk(BIOS_ERR, "ACPI(%s:%s): Incorrect CXL version:%d\n", __FILE__, __func__, cxl_ver); return chbs->length; } int acpi_create_cedt_cfmws(acpi_cedt_cfmws_t *cfmws, u64 base_hpa, u64 window_size, u8 eniw, u32 hbig, u16 restriction, u16 qtg_id, const u32 *interleave_target) { memset((void *)cfmws, 0, sizeof(acpi_cedt_cfmws_t)); cfmws->type = ACPI_CEDT_STRUCTURE_CFMWS; u8 niw = 0; if (eniw >= 8) printk(BIOS_ERR, "ACPI(%s:%s): Incorrect eniw::%d\n", __FILE__, __func__, eniw); else /* NIW = 2 ** ENIW */ niw = 0x1 << eniw; /* 36 + 4 * NIW */ cfmws->length = sizeof(acpi_cedt_cfmws_t) + 4 * niw; cfmws->base_hpa = base_hpa; cfmws->window_size = window_size; cfmws->eniw = eniw; // 0: Standard Modulo Arithmetic. Other values reserved. cfmws->interleave_arithmetic = 0; cfmws->hbig = hbig; cfmws->restriction = restriction; cfmws->qtg_id = qtg_id; memcpy(&cfmws->interleave_target, interleave_target, 4 * niw); return cfmws->length; } void acpi_create_cedt(acpi_cedt_t *cedt, unsigned long (*acpi_fill_cedt)(unsigned long current)) { acpi_header_t *header = &(cedt->header); unsigned long current = (unsigned long)cedt + sizeof(acpi_cedt_t); memset((void *)cedt, 0, sizeof(acpi_cedt_t)); if (acpi_fill_header(header, "CEDT", CEDT, sizeof(acpi_cedt_t)) != CB_SUCCESS) return; current = acpi_fill_cedt(current); /* (Re)calculate length and checksum. */ header->length = current - (unsigned long)cedt; header->checksum = acpi_checksum((void *)cedt, header->length); } int acpi_create_hmat_mpda(acpi_hmat_mpda_t *mpda, u32 initiator, u32 memory) { memset((void *)mpda, 0, sizeof(acpi_hmat_mpda_t)); mpda->type = 0; /* Memory Proximity Domain Attributes structure */ mpda->length = sizeof(acpi_hmat_mpda_t); /* * Proximity Domain for Attached Initiator field is valid. * Bit 1 and bit 2 are reserved since HMAT revision 2. */ mpda->flags = (1 << 0); mpda->proximity_domain_initiator = initiator; mpda->proximity_domain_memory = memory; return mpda->length; } void acpi_create_hmat(acpi_hmat_t *hmat, unsigned long (*acpi_fill_hmat)(unsigned long current)) { acpi_header_t *header = &(hmat->header); unsigned long current = (unsigned long)hmat + sizeof(acpi_hmat_t); memset((void *)hmat, 0, sizeof(acpi_hmat_t)); if (acpi_fill_header(header, "HMAT", HMAT, sizeof(acpi_hmat_t)) != CB_SUCCESS) return; current = acpi_fill_hmat(current); /* (Re)calculate length and checksum. */ header->length = current - (unsigned long)hmat; header->checksum = acpi_checksum((void *)hmat, header->length); } /* http://h21007.www2.hp.com/portal/download/files/unprot/Itanium/slit.pdf */ void acpi_create_slit(acpi_slit_t *slit, unsigned long (*acpi_fill_slit)(unsigned long current)) { acpi_header_t *header = &(slit->header); unsigned long current = (unsigned long)slit + sizeof(acpi_slit_t); memset((void *)slit, 0, sizeof(acpi_slit_t)); if (acpi_fill_header(header, "SLIT", SLIT, sizeof(acpi_slit_t)) != CB_SUCCESS) return; current = acpi_fill_slit(current); /* (Re)calculate length and checksum. */ header->length = current - (unsigned long)slit; header->checksum = acpi_checksum((void *)slit, header->length); } /* * This method adds the ACPI error injection capability. It fills the default information. * HW dependent code (caller) can modify the defaults upon return. If no changes are necessary * and the defaults are acceptable then caller can simply add the table (acpi_add_table). * INPUTS: * einj - ptr to the starting location of EINJ table * actions - number of actions to trigger an error (HW dependent) * addr - address of trigger action table. This should be ACPI reserved memory and it will be * shared between OS and FW. */ void acpi_create_einj(acpi_einj_t *einj, uintptr_t addr, u8 actions) { int i; acpi_header_t *header = &(einj->header); acpi_injection_header_t *inj_header = &(einj->inj_header); acpi_einj_smi_t *einj_smi = (acpi_einj_smi_t *)addr; acpi_einj_trigger_table_t *tat; if (!header) return; printk(BIOS_DEBUG, "%s einj_smi = %p\n", __func__, einj_smi); memset(einj_smi, 0, sizeof(acpi_einj_smi_t)); tat = (acpi_einj_trigger_table_t *)((uint8_t *)einj_smi + sizeof(acpi_einj_smi_t)); tat->header_size = 16; tat->revision = 0; tat->table_size = sizeof(acpi_einj_trigger_table_t) + sizeof(acpi_einj_action_table_t) * actions - 1; tat->entry_count = actions; printk(BIOS_DEBUG, "%s trigger_action_table = %p\n", __func__, tat); for (i = 0; i < actions; i++) { tat->trigger_action[i].action = TRIGGER_ERROR; tat->trigger_action[i].instruction = NO_OP; tat->trigger_action[i].flags = FLAG_IGNORE; tat->trigger_action[i].reg.space_id = ACPI_ADDRESS_SPACE_MEMORY; tat->trigger_action[i].reg.bit_width = 64; tat->trigger_action[i].reg.bit_offset = 0; tat->trigger_action[i].reg.access_size = ACPI_ACCESS_SIZE_QWORD_ACCESS; tat->trigger_action[i].reg.addr = 0; tat->trigger_action[i].value = 0; tat->trigger_action[i].mask = 0xFFFFFFFF; } acpi_einj_action_table_t default_actions[ACTION_COUNT] = { [0] = { .action = BEGIN_INJECT_OP, .instruction = WRITE_REGISTER_VALUE, .flags = FLAG_PRESERVE, .reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->op_state), .value = 0, .mask = 0xFFFFFFFF }, [1] = { .action = GET_TRIGGER_ACTION_TABLE, .instruction = READ_REGISTER, .flags = FLAG_IGNORE, .reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->trigger_action_table), .value = 0, .mask = 0xFFFFFFFFFFFFFFFF }, [2] = { .action = SET_ERROR_TYPE, .instruction = WRITE_REGISTER, .flags = FLAG_PRESERVE, .reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->err_inject[0]), .value = 0, .mask = 0xFFFFFFFF }, [3] = { .action = GET_ERROR_TYPE, .instruction = READ_REGISTER, .flags = FLAG_IGNORE, .reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->err_inj_cap), .value = 0, .mask = 0xFFFFFFFF }, [4] = { .action = END_INJECT_OP, .instruction = WRITE_REGISTER_VALUE, .flags = FLAG_PRESERVE, .reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->op_state), .value = 0, .mask = 0xFFFFFFFF }, [5] = { .action = EXECUTE_INJECT_OP, .instruction = WRITE_REGISTER_VALUE, .flags = FLAG_PRESERVE, .reg = EINJ_REG_IO(), .value = 0x9a, .mask = 0xFFFF, }, [6] = { .action = CHECK_BUSY_STATUS, .instruction = READ_REGISTER_VALUE, .flags = FLAG_IGNORE, .reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->op_status), .value = 1, .mask = 1, }, [7] = { .action = GET_CMD_STATUS, .instruction = READ_REGISTER, .flags = FLAG_PRESERVE, .reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->cmd_sts), .value = 0, .mask = 0x1fe, }, [8] = { .action = SET_ERROR_TYPE_WITH_ADDRESS, .instruction = WRITE_REGISTER, .flags = FLAG_PRESERVE, .reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->setaddrtable), .value = 1, .mask = 0xffffffff } }; einj_smi->err_inj_cap = ACPI_EINJ_DEFAULT_CAP; einj_smi->trigger_action_table = (u64)(uintptr_t)tat; for (i = 0; i < ACTION_COUNT; i++) printk(BIOS_DEBUG, "default_actions[%d].reg.addr is %llx\n", i, default_actions[i].reg.addr); memset((void *)einj, 0, sizeof(*einj)); if (acpi_fill_header(header, "EINJ", EINJ, sizeof(acpi_einj_t)) != CB_SUCCESS) return; inj_header->einj_header_size = sizeof(acpi_injection_header_t); inj_header->entry_count = ACTION_COUNT; printk(BIOS_DEBUG, "%s einj->action_table = %p\n", __func__, einj->action_table); memcpy((void *)einj->action_table, (void *)default_actions, sizeof(einj->action_table)); header->checksum = acpi_checksum((void *)einj, sizeof(*einj)); } void acpi_create_vfct(const struct device *device, acpi_vfct_t *vfct, unsigned long (*acpi_fill_vfct)(const struct device *device, acpi_vfct_t *vfct_struct, unsigned long current)) { acpi_header_t *header = &(vfct->header); unsigned long current = (unsigned long)vfct + sizeof(acpi_vfct_t); memset((void *)vfct, 0, sizeof(acpi_vfct_t)); if (acpi_fill_header(header, "VFCT", VFCT, sizeof(acpi_vfct_t)) != CB_SUCCESS) return; current = acpi_fill_vfct(device, vfct, current); /* If no BIOS image, return with header->length == 0. */ if (!vfct->VBIOSImageOffset) return; /* (Re)calculate length and checksum. */ header->length = current - (unsigned long)vfct; header->checksum = acpi_checksum((void *)vfct, header->length); } void acpi_create_ipmi(const struct device *device, struct acpi_spmi *spmi, const u16 ipmi_revision, const acpi_addr_t *addr, const enum acpi_ipmi_interface_type type, const s8 gpe_interrupt, const u32 apic_interrupt, const u32 uid) { acpi_header_t *header = &(spmi->header); memset((void *)spmi, 0, sizeof(struct acpi_spmi)); if (acpi_fill_header(header, "SPMI", SPMI, sizeof(struct acpi_spmi)) != CB_SUCCESS) return; spmi->reserved = 1; if (device->path.type == DEVICE_PATH_PCI) { spmi->pci_device_flag = ACPI_IPMI_PCI_DEVICE_FLAG; spmi->pci_segment_group = device->bus->segment_group; spmi->pci_bus = device->bus->secondary; spmi->pci_device = device->path.pci.devfn >> 3; spmi->pci_function = device->path.pci.devfn & 0x7; } else if (type != IPMI_INTERFACE_SSIF) { memcpy(spmi->uid, &uid, sizeof(spmi->uid)); } spmi->base_address = *addr; spmi->specification_revision = ipmi_revision; spmi->interface_type = type; if (gpe_interrupt >= 0 && gpe_interrupt < 32) { spmi->gpe = gpe_interrupt; spmi->interrupt_type |= ACPI_IPMI_INT_TYPE_SCI; } if (apic_interrupt > 0) { spmi->global_system_interrupt = apic_interrupt; spmi->interrupt_type |= ACPI_IPMI_INT_TYPE_APIC; } /* Calculate checksum. */ header->checksum = acpi_checksum((void *)spmi, header->length); } void acpi_create_ivrs(acpi_ivrs_t *ivrs, unsigned long (*acpi_fill_ivrs)(acpi_ivrs_t *ivrs_struct, unsigned long current)) { acpi_header_t *header = &(ivrs->header); unsigned long current = (unsigned long)ivrs + sizeof(acpi_ivrs_t); memset((void *)ivrs, 0, sizeof(acpi_ivrs_t)); if (acpi_fill_header(header, "IVRS", IVRS, sizeof(acpi_ivrs_t)) != CB_SUCCESS) return; current = acpi_fill_ivrs(ivrs, current); /* (Re)calculate length and checksum. */ header->length = current - (unsigned long)ivrs; header->checksum = acpi_checksum((void *)ivrs, header->length); } void acpi_create_crat(struct acpi_crat_header *crat, unsigned long (*acpi_fill_crat)(struct acpi_crat_header *crat_struct, unsigned long current)) { acpi_header_t *header = &(crat->header); unsigned long current = (unsigned long)crat + sizeof(struct acpi_crat_header); memset((void *)crat, 0, sizeof(struct acpi_crat_header)); if (acpi_fill_header(header, "CRAT", CRAT, sizeof(struct acpi_crat_header)) != CB_SUCCESS) return; current = acpi_fill_crat(crat, current); /* (Re)calculate length and checksum. */ header->length = current - (unsigned long)crat; header->checksum = acpi_checksum((void *)crat, header->length); } static void acpi_create_dbg2(acpi_dbg2_header_t *dbg2, int port_type, int port_subtype, acpi_addr_t *address, uint32_t address_size, const char *device_path) { uintptr_t current; acpi_dbg2_device_t *device; uint32_t *dbg2_addr_size; acpi_header_t *header; size_t path_len; const char *path; char *namespace; /* Fill out header fields. */ current = (uintptr_t)dbg2; memset(dbg2, 0, sizeof(acpi_dbg2_header_t)); header = &(dbg2->header); if (acpi_fill_header(header, "DBG2", DBG2, sizeof(acpi_dbg2_header_t)) != CB_SUCCESS) return; /* One debug device defined */ dbg2->devices_offset = sizeof(acpi_dbg2_header_t); dbg2->devices_count = 1; current += sizeof(acpi_dbg2_header_t); /* Device comes after the header */ device = (acpi_dbg2_device_t *)current; memset(device, 0, sizeof(acpi_dbg2_device_t)); current += sizeof(acpi_dbg2_device_t); device->revision = 0; device->address_count = 1; device->port_type = port_type; device->port_subtype = port_subtype; /* Base Address comes after device structure */ memcpy((void *)current, address, sizeof(acpi_addr_t)); device->base_address_offset = current - (uintptr_t)device; current += sizeof(acpi_addr_t); /* Address Size comes after address structure */ dbg2_addr_size = (uint32_t *)current; device->address_size_offset = current - (uintptr_t)device; *dbg2_addr_size = address_size; current += sizeof(uint32_t); /* Namespace string comes last, use '.' if not provided */ path = device_path ? : "."; /* Namespace string length includes NULL terminator */ path_len = strlen(path) + 1; namespace = (char *)current; device->namespace_string_length = path_len; device->namespace_string_offset = current - (uintptr_t)device; strncpy(namespace, path, path_len); current += path_len; /* Update structure lengths and checksum */ device->length = current - (uintptr_t)device; header->length = current - (uintptr_t)dbg2; header->checksum = acpi_checksum((uint8_t *)dbg2, header->length); } static unsigned long acpi_write_dbg2_uart(acpi_rsdp_t *rsdp, unsigned long current, int space_id, uint64_t base, uint32_t size, int access_size, const char *name) { acpi_dbg2_header_t *dbg2 = (acpi_dbg2_header_t *)current; acpi_addr_t address; memset(&address, 0, sizeof(address)); address.space_id = space_id; address.addrl = (uint32_t)base; address.addrh = (uint32_t)((base >> 32) & 0xffffffff); address.access_size = access_size; int subtype; /* 16550-compatible with parameters defined in Generic Address Structure */ if (CONFIG(DRIVERS_UART_8250IO) || CONFIG(DRIVERS_UART_8250MEM)) subtype = ACPI_DBG2_PORT_SERIAL_16550; else if (CONFIG(DRIVERS_UART_PL011)) subtype = ACPI_DBG2_PORT_SERIAL_ARM_PL011; else return current; acpi_create_dbg2(dbg2, ACPI_DBG2_PORT_SERIAL, subtype, &address, size, name); if (dbg2->header.length) { current += dbg2->header.length; current = acpi_align_current(current); acpi_add_table(rsdp, dbg2); } return current; } unsigned long acpi_write_dbg2_pci_uart(acpi_rsdp_t *rsdp, unsigned long current, const struct device *dev, uint8_t access_size) { struct resource *res; if (!dev) { printk(BIOS_DEBUG, "%s: Device not found\n", __func__); return current; } if (!dev->enabled) { printk(BIOS_INFO, "%s: Device not enabled\n", __func__); return current; } res = probe_resource(dev, PCI_BASE_ADDRESS_0); if (!res) { printk(BIOS_ERR, "%s: Unable to find resource for %s\n", __func__, dev_path(dev)); return current; } int space_id; if (res->flags & IORESOURCE_IO) space_id = ACPI_ADDRESS_SPACE_IO; else if (res->flags & IORESOURCE_MEM) space_id = ACPI_ADDRESS_SPACE_MEMORY; else { printk(BIOS_ERR, "%s: Unknown address space type\n", __func__); return current; } return acpi_write_dbg2_uart(rsdp, current, space_id, res->base, res->size, access_size, acpi_device_path(dev)); } unsigned long acpi_pl011_write_dbg2_uart(acpi_rsdp_t *rsdp, unsigned long current, uint64_t base, const char *name) { return acpi_write_dbg2_uart(rsdp, current, ACPI_ADDRESS_SPACE_MEMORY, base, sizeof(struct pl011_uart), ACPI_ACCESS_SIZE_DWORD_ACCESS, name); } unsigned long acpi_16550_mmio32_write_dbg2_uart(acpi_rsdp_t *rsdp, unsigned long current, uint64_t base, const char *name) { return acpi_write_dbg2_uart(rsdp, current, ACPI_ADDRESS_SPACE_MEMORY, base, 0x100, ACPI_ACCESS_SIZE_DWORD_ACCESS, name); } static void acpi_create_facs(void *header) { acpi_facs_t *facs = header; memcpy(facs->signature, "FACS", 4); facs->length = sizeof(acpi_facs_t); facs->hardware_signature = 0; facs->firmware_waking_vector = 0; facs->global_lock = 0; facs->flags = 0; facs->x_firmware_waking_vector_l = 0; facs->x_firmware_waking_vector_h = 0; facs->version = get_acpi_table_revision(FACS); } static void acpi_write_rsdt(acpi_rsdt_t *rsdt, char *oem_id, char *oem_table_id) { acpi_header_t *header = &(rsdt->header); if (acpi_fill_header(header, "RSDT", RSDT, sizeof(acpi_rsdt_t)) != CB_SUCCESS) return; /* Entries are filled in later, we come with an empty set. */ /* Fix checksum. */ header->checksum = acpi_checksum((void *)rsdt, sizeof(acpi_rsdt_t)); } static void acpi_write_xsdt(acpi_xsdt_t *xsdt, char *oem_id, char *oem_table_id) { acpi_header_t *header = &(xsdt->header); if (acpi_fill_header(header, "XSDT", XSDT, sizeof(acpi_xsdt_t)) != CB_SUCCESS) return; /* Entries are filled in later, we come with an empty set. */ /* Fix checksum. */ header->checksum = acpi_checksum((void *)xsdt, sizeof(acpi_xsdt_t)); } static void acpi_write_rsdp(acpi_rsdp_t *rsdp, acpi_rsdt_t *rsdt, acpi_xsdt_t *xsdt, char *oem_id) { memset(rsdp, 0, sizeof(acpi_rsdp_t)); memcpy(rsdp->signature, RSDP_SIG, 8); memcpy(rsdp->oem_id, oem_id, 6); rsdp->length = sizeof(acpi_rsdp_t); rsdp->rsdt_address = (uintptr_t)rsdt; /* * Revision: ACPI 1.0: 0, ACPI 2.0/3.0/4.0: 2. * * Some OSes expect an XSDT to be present for RSD PTR revisions >= 2. * If we don't have an ACPI XSDT, force ACPI 1.0 (and thus RSD PTR * revision 0). */ if (xsdt == NULL) { rsdp->revision = 0; } else { rsdp->xsdt_address = (u64)(uintptr_t)xsdt; rsdp->revision = get_acpi_table_revision(RSDP); } /* Calculate checksums. */ rsdp->checksum = acpi_checksum((void *)rsdp, 20); rsdp->ext_checksum = acpi_checksum((void *)rsdp, sizeof(acpi_rsdp_t)); } unsigned long acpi_create_hest_error_source(acpi_hest_t *hest, acpi_hest_esd_t *esd, u16 type, void *data, u16 data_len) { acpi_header_t *header = &(hest->header); acpi_hest_hen_t *hen; void *pos; u16 len; pos = esd; memset(pos, 0, sizeof(acpi_hest_esd_t)); len = 0; esd->type = type; /* MCE */ esd->source_id = hest->error_source_count; esd->flags = 0; /* FIRMWARE_FIRST */ esd->enabled = 1; esd->prealloc_erecords = 1; esd->max_section_per_record = 0x1; len += sizeof(acpi_hest_esd_t); pos = esd + 1; switch (type) { case 0: /* MCE */ break; case 1: /* CMC */ hen = (acpi_hest_hen_t *)(pos); memset(pos, 0, sizeof(acpi_hest_hen_t)); hen->type = 3; /* SCI? */ hen->length = sizeof(acpi_hest_hen_t); hen->conf_we = 0; /* Configuration Write Enable. */ hen->poll_interval = 0; hen->vector = 0; hen->sw2poll_threshold_val = 0; hen->sw2poll_threshold_win = 0; hen->error_threshold_val = 0; hen->error_threshold_win = 0; len += sizeof(acpi_hest_hen_t); pos = hen + 1; break; case 2: /* NMI */ case 6: /* AER Root Port */ case 7: /* AER Endpoint */ case 8: /* AER Bridge */ case 9: /* Generic Hardware Error Source. */ /* TODO: */ break; default: printk(BIOS_DEBUG, "Invalid type of Error Source."); break; } hest->error_source_count++; memcpy(pos, data, data_len); len += data_len; if (header) header->length += len; return len; } /* ACPI 4.0 */ void acpi_write_hest(acpi_hest_t *hest, unsigned long (*acpi_fill_hest)(acpi_hest_t *hest)) { acpi_header_t *header = &(hest->header); memset(hest, 0, sizeof(acpi_hest_t)); if (acpi_fill_header(header, "HEST", HEST, sizeof(acpi_hest_t)) != CB_SUCCESS) return; acpi_fill_hest(hest); /* Calculate checksums. */ header->checksum = acpi_checksum((void *)hest, header->length); } /* ACPI 3.0b */ static void acpi_create_bert(acpi_header_t *header, void *unused) { if (!CONFIG(ACPI_BERT)) return; acpi_bert_t *bert = (acpi_bert_t *)header; void *region; size_t size; if (acpi_soc_get_bert_region(®ion, &size) != CB_SUCCESS) return; if (acpi_fill_header(header, "BERT", BERT, sizeof(acpi_bert_t)) != CB_SUCCESS) return; bert->error_region = (uintptr_t)region; bert->region_length = (size_t)size; } __weak void arch_fill_fadt(acpi_fadt_t *fadt) { } __weak void soc_fill_fadt(acpi_fadt_t *fadt) { } __weak void mainboard_fill_fadt(acpi_fadt_t *fadt) { } static acpi_header_t *dsdt; static void acpi_create_fadt(acpi_header_t *header, void *arg1) { acpi_fadt_t *fadt = (acpi_fadt_t *)header; acpi_facs_t *facs = (acpi_facs_t *)(*(acpi_facs_t **)arg1); if (acpi_fill_header(header, "FACP", FADT, sizeof(acpi_fadt_t)) != CB_SUCCESS) return; fadt->FADT_MinorVersion = get_acpi_fadt_minor_version(); if ((uintptr_t)facs <= UINT32_MAX) fadt->firmware_ctrl = (uintptr_t)facs; else fadt->x_firmware_ctl_h = (uint32_t)((uint64_t)(uintptr_t)facs >> 32); fadt->x_firmware_ctl_l = (uint32_t)(uintptr_t)facs; if ((uintptr_t)dsdt <= UINT32_MAX) fadt->dsdt = (uintptr_t)dsdt; else fadt->x_dsdt_h = (uint32_t)((uint64_t)(uintptr_t)dsdt >> 32); fadt->x_dsdt_l = (uint32_t)(uintptr_t)dsdt; /* should be 0 ACPI 3.0 */ fadt->reserved = 0; /* P_LVLx latencies are not used as CPU _CST will override them. */ fadt->p_lvl2_lat = ACPI_FADT_C2_NOT_SUPPORTED; fadt->p_lvl3_lat = ACPI_FADT_C3_NOT_SUPPORTED; /* Use CPU _PTC instead to provide P_CNT details. */ fadt->duty_offset = 0; fadt->duty_width = 0; fadt->preferred_pm_profile = acpi_get_preferred_pm_profile(); arch_fill_fadt(fadt); acpi_fill_fadt(fadt); soc_fill_fadt(fadt); mainboard_fill_fadt(fadt); } static void acpi_create_lpit(acpi_header_t *header, void *unused) { if (!CONFIG(ACPI_LPIT)) return; acpi_lpit_t *lpit = (acpi_lpit_t *)header; unsigned long current = (unsigned long)lpit + sizeof(acpi_lpit_t); if (acpi_fill_header(header, "LPIT", LPIT, sizeof(acpi_lpit_t)) != CB_SUCCESS) return; current = acpi_fill_lpit(current); /* (Re)calculate length. */ header->length = current - (unsigned long)lpit; } static void acpi_create_gtdt(acpi_header_t *header, void *unused) { if (!CONFIG(ACPI_GTDT)) return; acpi_gtdt_t *gtdt = (acpi_gtdt_t *)header; unsigned long current = (unsigned long)gtdt + sizeof(acpi_gtdt_t); if (acpi_fill_header(header, "GTDT", GTDT, sizeof(acpi_gtdt_t)) != CB_SUCCESS) return; /* Fill out header fields. */ gtdt->platform_timer_offset = sizeof(acpi_gtdt_t); acpi_soc_fill_gtdt(gtdt); current = acpi_soc_gtdt_add_timers(>dt->platform_timer_count, current); /* (Re)calculate length. */ header->length = current - (unsigned long)gtdt; } unsigned long acpi_gtdt_add_timer_block(unsigned long current, const uint64_t address, struct acpi_gtdt_timer_entry *timers, size_t number) { struct acpi_gtdt_timer_block *block = (struct acpi_gtdt_timer_block *)current; memset(block, 0, sizeof(struct acpi_gtdt_timer_block)); assert(number < 8 && number != 0); const size_t entries_size = number * sizeof(struct acpi_gtdt_timer_entry); block->header.type = ACPI_GTDT_TYPE_TIMER_BLOCK; block->header.length = sizeof(struct acpi_gtdt_timer_block) + entries_size; block->block_address = address; block->timer_count = number; block->timer_offset = sizeof(struct acpi_gtdt_timer_block); current += sizeof(struct acpi_gtdt_timer_block); memcpy((void *)current, timers, entries_size); current += entries_size; return current; } unsigned long acpi_gtdt_add_watchdog(unsigned long current, uint64_t refresh_frame, uint64_t control_frame, uint32_t gsiv, uint32_t flags) { struct acpi_gtdt_watchdog *wd = (struct acpi_gtdt_watchdog *)current; memset(wd, 0, sizeof(struct acpi_gtdt_watchdog)); wd->header.type = ACPI_GTDT_TYPE_WATCHDOG; wd->header.length = sizeof(struct acpi_gtdt_watchdog); wd->refresh_frame_address = refresh_frame; wd->control_frame_address = control_frame; wd->timer_interrupt = gsiv; wd->timer_flags = flags; return current + sizeof(struct acpi_gtdt_watchdog); } static void acpi_create_iort(acpi_header_t *header, void *unused) { if (!CONFIG(ACPI_IORT)) return; acpi_iort_t *iort = (acpi_iort_t *)header; unsigned long current = (unsigned long)iort + sizeof(acpi_iort_t); if (acpi_fill_header(header, "IORT", IORT, sizeof(acpi_iort_t)) != CB_SUCCESS) return; iort->node_count = 0; iort->node_offset = current - (unsigned long)iort; current = acpi_soc_fill_iort(iort, current); /* (Re)calculate length */ header->length = current - (unsigned long)iort; } static void acpi_create_wdat(acpi_header_t *header, void *unused) { if (!CONFIG(ACPI_WDAT_WDT)) return; acpi_wdat_t *wdat = (acpi_wdat_t *)header; unsigned long current = (unsigned long)wdat + sizeof(acpi_wdat_t); memset((void *)wdat, 0, sizeof(acpi_wdat_t)); if (acpi_fill_header(header, "WDAT", WDAT, sizeof(acpi_wdat_t)) != CB_SUCCESS) return; current = acpi_soc_fill_wdat(wdat, current); /* (Re)calculate length. */ header->length = current - (unsigned long)wdat; } unsigned long acpi_create_lpi_desc_ncst(acpi_lpi_desc_ncst_t *lpi_desc, uint16_t uid) { memset(lpi_desc, 0, sizeof(acpi_lpi_desc_ncst_t)); lpi_desc->header.length = sizeof(acpi_lpi_desc_ncst_t); lpi_desc->header.type = ACPI_LPI_DESC_TYPE_NATIVE_CSTATE; lpi_desc->header.uid = uid; return lpi_desc->header.length; } static void acpi_create_pptt(acpi_header_t *header, void *unused) { if (!CONFIG(ACPI_PPTT)) return; if (acpi_fill_header(header, "PPTT", PPTT, sizeof(acpi_pptt_t)) != CB_SUCCESS) return; acpi_pptt_t *pptt = (acpi_pptt_t *)header; acpi_create_pptt_body(pptt); } static uint8_t acpi_spcr_type(void) { /* 16550-compatible with parameters defined in Generic Address Structure */ if (CONFIG(DRIVERS_UART_8250IO) || CONFIG(DRIVERS_UART_8250MEM)) return 0x12; if (CONFIG(DRIVERS_UART_PL011)) return 0x3; printk(BIOS_ERR, "%s: unknown serial type\n", __func__); return 0xff; } static void acpi_create_spcr(acpi_header_t *header, void *unused) { acpi_spcr_t *spcr = (acpi_spcr_t *)header; struct lb_serial serial; if (!CONFIG(CONSOLE_SERIAL)) return; if (fill_lb_serial(&serial) != CB_SUCCESS) return; if (acpi_fill_header(header, "SPCR", SPCR, sizeof(acpi_spcr_t)) != CB_SUCCESS) return; spcr->interface_type = acpi_spcr_type(); assert(serial.type == LB_SERIAL_TYPE_IO_MAPPED || serial.type == LB_SERIAL_TYPE_MEMORY_MAPPED); spcr->base_address.space_id = serial.type == LB_SERIAL_TYPE_IO_MAPPED ? ACPI_ADDRESS_SPACE_IO : ACPI_ADDRESS_SPACE_MEMORY; spcr->base_address.bit_width = serial.regwidth * 8; spcr->base_address.bit_offset = 0; switch (serial.regwidth) { case 1: spcr->base_address.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS; break; case 2: spcr->base_address.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS; break; case 4: spcr->base_address.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS; break; default: printk(BIOS_ERR, "%s, Invalid serial regwidth\n", __func__); } spcr->base_address.addrl = serial.baseaddr; spcr->base_address.addrh = 0; spcr->interrupt_type = 0; spcr->irq = 0; spcr->configured_baudrate = 0; /* Have the OS use whatever is currently set */ spcr->parity = 0; spcr->stop_bits = 1; spcr->flow_control = 0; spcr->terminal_type = 2; /* 2 = VT-UTF8 */ spcr->language = 0; spcr->pci_did = 0xffff; spcr->pci_vid = 0xffff; header->checksum = acpi_checksum((void *)spcr, header->length); } unsigned long __weak fw_cfg_acpi_tables(unsigned long start) { return 0; } void preload_acpi_dsdt(void) { const char *file = CONFIG_CBFS_PREFIX "/dsdt.aml"; if (!CONFIG(CBFS_PRELOAD)) return; printk(BIOS_DEBUG, "Preloading %s\n", file); cbfs_preload(file); } static void acpi_create_dsdt(acpi_header_t *header, void *dsdt_file_arg) { dsdt = header; acpi_header_t *dsdt_file = *(acpi_header_t **)dsdt_file_arg; unsigned long current = (unsigned long)header; dsdt = (acpi_header_t *)current; memcpy(dsdt, dsdt_file, sizeof(acpi_header_t)); if (dsdt->length >= sizeof(acpi_header_t)) { current += sizeof(acpi_header_t); acpigen_set_current((char *)current); if (CONFIG(ACPI_SOC_NVS)) acpi_fill_gnvs(); if (CONFIG(CHROMEOS_NVS)) acpi_fill_cnvs(); for (const struct device *dev = all_devices; dev; dev = dev->next) if (dev->ops && dev->ops->acpi_inject_dsdt) dev->ops->acpi_inject_dsdt(dev); current = (unsigned long)acpigen_get_current(); memcpy((char *)current, (char *)dsdt_file + sizeof(acpi_header_t), dsdt->length - sizeof(acpi_header_t)); current += dsdt->length - sizeof(acpi_header_t); /* (Re)calculate length. */ dsdt->length = current - (unsigned long)dsdt; } } static void acpi_create_slic(acpi_header_t *header, void *slic_file_arg) { acpi_header_t *slic_file = *(acpi_header_t **)slic_file_arg; acpi_header_t *slic = header; if (slic_file) memcpy(slic, slic_file, slic_file->length); } static uintptr_t coreboot_rsdp; uintptr_t get_coreboot_rsdp(void) { return coreboot_rsdp; } static void acpixtract_compatible_hexdump(const void *memory, size_t length) { size_t i, j; uint8_t *line; size_t num_bytes; for (i = 0; i < length; i += 16) { num_bytes = MIN(length - i, 16); line = ((uint8_t *)memory) + i; printk(BIOS_SPEW, " %04zX:", i); for (j = 0; j < num_bytes; j++) printk(BIOS_SPEW, " %02x", line[j]); for (; j < 16; j++) printk(BIOS_SPEW, " "); printk(BIOS_SPEW, " "); for (j = 0; j < num_bytes; j++) printk(BIOS_SPEW, "%c", isprint(line[j]) ? line[j] : '.'); printk(BIOS_SPEW, "\n"); } } static void acpidump_print(void *table_ptr) { if (table_ptr == NULL) return; const acpi_header_t *header = (acpi_header_t *)table_ptr; const size_t table_size = header->length; printk(BIOS_SPEW, "%.4s @ 0x0000000000000000\n", header->signature); acpixtract_compatible_hexdump(table_ptr, table_size); printk(BIOS_SPEW, "\n"); } unsigned long write_acpi_tables(const unsigned long start) { unsigned long current; acpi_rsdp_t *rsdp; acpi_rsdt_t *rsdt = NULL; acpi_xsdt_t *xsdt = NULL; acpi_facs_t *facs = NULL; acpi_header_t *slic_file; acpi_header_t *ssdt = NULL; acpi_header_t *dsdt_file; struct device *dev; unsigned long fw; size_t slic_size, dsdt_size; char oem_id[6], oem_table_id[8]; const struct acpi_table_generator { void (*create_table)(acpi_header_t *table, void *arg); void *args; size_t min_size; } tables[] = { { acpi_create_dsdt, &dsdt_file, sizeof(acpi_header_t) }, { acpi_create_fadt, &facs, sizeof(acpi_fadt_t) }, { acpi_create_slic, &slic_file, sizeof(acpi_header_t) }, { acpi_create_ssdt_generator, NULL, sizeof(acpi_header_t) }, { acpi_create_mcfg, NULL, sizeof(acpi_mcfg_t) }, { acpi_create_tcpa, NULL, sizeof(acpi_tcpa_t) }, { acpi_create_tpm2, NULL, sizeof(acpi_tpm2_t) }, { acpi_create_lpit, NULL, sizeof(acpi_lpit_t) }, { acpi_create_madt, NULL, sizeof(acpi_header_t) }, { acpi_create_bert, NULL, sizeof(acpi_bert_t) }, { acpi_create_spcr, NULL, sizeof(acpi_spcr_t) }, { acpi_create_gtdt, NULL, sizeof(acpi_gtdt_t) }, { acpi_create_pptt, NULL, sizeof(acpi_pptt_t) }, { acpi_create_iort, NULL, sizeof(acpi_iort_t) }, { acpi_create_wdat, NULL, sizeof(acpi_wdat_t) }, }; current = start; /* Align ACPI tables to 16byte */ current = acpi_align_current(current); /* Special case for qemu */ fw = fw_cfg_acpi_tables(current); if (fw) { rsdp = NULL; /* Find RSDP. */ for (void *p = (void *)current; p < (void *)fw; p += 16) { if (valid_rsdp((acpi_rsdp_t *)p)) { rsdp = p; coreboot_rsdp = (uintptr_t)rsdp; break; } } if (!rsdp) return fw; current = fw; current = acpi_align_current(current); if (rsdp->xsdt_address == 0) { xsdt = (acpi_xsdt_t *)current; current += sizeof(acpi_xsdt_t); current = acpi_align_current(current); /* * Qemu only creates an RSDT. * Add an XSDT based on the existing RSDT entries. */ acpi_rsdt_t *existing_rsdt = (acpi_rsdt_t *)(uintptr_t)rsdp->rsdt_address; acpi_write_rsdp(rsdp, existing_rsdt, xsdt, oem_id); acpi_write_xsdt(xsdt, oem_id, oem_table_id); /* * Copy existing entries to the new XSDT. This will override existing * RSDT entries with the same value. */ for (int i = 0; existing_rsdt->entry[i]; i++) acpi_add_table(rsdp, (void *)(uintptr_t)existing_rsdt->entry[i]); } /* Add BOOT0000 for Linux google firmware driver */ printk(BIOS_DEBUG, "ACPI: * SSDT\n"); ssdt = (acpi_header_t *)current; current += sizeof(acpi_header_t); memset((void *)ssdt, 0, sizeof(acpi_header_t)); memcpy(&ssdt->signature, "SSDT", 4); ssdt->revision = get_acpi_table_revision(SSDT); memcpy(&ssdt->oem_id, OEM_ID, 6); memcpy(&ssdt->oem_table_id, oem_table_id, 8); ssdt->oem_revision = 42; memcpy(&ssdt->asl_compiler_id, ASLC, 4); ssdt->asl_compiler_revision = asl_revision; ssdt->length = sizeof(acpi_header_t); acpigen_set_current((char *)current); /* Write object to declare coreboot tables */ acpi_ssdt_write_cbtable(); /* (Re)calculate length and checksum. */ ssdt->length = current - (unsigned long)ssdt; ssdt->checksum = acpi_checksum((void *)ssdt, ssdt->length); acpi_create_ssdt_generator(ssdt, NULL); acpi_add_table(rsdp, ssdt); return fw; } dsdt_file = cbfs_map(CONFIG_CBFS_PREFIX "/dsdt.aml", &dsdt_size); if (!dsdt_file) { printk(BIOS_ERR, "No DSDT file, skipping ACPI tables\n"); return start; } if (dsdt_file->length > dsdt_size || dsdt_file->length < sizeof(acpi_header_t) || memcmp(dsdt_file->signature, "DSDT", 4) != 0) { printk(BIOS_ERR, "Invalid DSDT file, skipping ACPI tables\n"); cbfs_unmap(dsdt_file); return start; } slic_file = cbfs_map(CONFIG_CBFS_PREFIX "/slic", &slic_size); if (slic_file && (slic_file->length > slic_size || slic_file->length < sizeof(acpi_header_t) || (memcmp(slic_file->signature, "SLIC", 4) != 0 && memcmp(slic_file->signature, "MSDM", 4) != 0))) { cbfs_unmap(slic_file); slic_file = 0; } if (slic_file) { memcpy(oem_id, slic_file->oem_id, 6); memcpy(oem_table_id, slic_file->oem_table_id, 8); } else { memcpy(oem_id, OEM_ID, 6); memcpy(oem_table_id, ACPI_TABLE_CREATOR, 8); } printk(BIOS_INFO, "ACPI: Writing ACPI tables at %lx.\n", start); /* We need at least an RSDP, RSDT for ACPI 1.0 compat, otherwise XSDT */ rsdp = (acpi_rsdp_t *)current; coreboot_rsdp = (uintptr_t)rsdp; current += sizeof(acpi_rsdp_t); current = acpi_align_current(current); if (current + sizeof(acpi_rsdt_t) - 1 <= UINT32_MAX) { rsdt = (acpi_rsdt_t *)current; current += sizeof(acpi_rsdt_t); current = acpi_align_current(current); } else { printk(BIOS_INFO, "Not adding RSDT because tables reside above 4G."); } xsdt = (acpi_xsdt_t *)current; current += sizeof(acpi_xsdt_t); current = acpi_align_current(current); /* clear all table memory */ memset((void *)start, 0, current - start); acpi_write_rsdp(rsdp, rsdt, xsdt, oem_id); acpi_write_rsdt(rsdt, oem_id, oem_table_id); acpi_write_xsdt(xsdt, oem_id, oem_table_id); if (ENV_X86) { printk(BIOS_DEBUG, "ACPI: * FACS\n"); current = ALIGN_UP(current, 64); facs = (acpi_facs_t *)current; current += sizeof(acpi_facs_t); current = acpi_align_current(current); acpi_create_facs(facs); } for (size_t i = 0; i < ARRAY_SIZE(tables); i++) { acpi_header_t *header = (acpi_header_t *)current; memset(header, 0, tables[i].min_size); tables[i].create_table(header, tables[i].args); if (header->length < tables[i].min_size) continue; header->checksum = 0; header->checksum = acpi_checksum((void *)header, header->length); current += header->length; current = acpi_align_current(current); if (tables[i].create_table == acpi_create_dsdt) continue; printk(BIOS_DEBUG, "ACPI: * %.4s\n", header->signature); acpi_add_table(rsdp, header); } /* * cbfs_unmap() uses mem_pool_free() which works correctly only * if freeing is done in reverse order than memory allocation. * This is why unmapping of dsdt_file must be done after * unmapping slic file. */ cbfs_unmap(slic_file); cbfs_unmap(dsdt_file); printk(BIOS_DEBUG, "current = %lx\n", current); for (dev = all_devices; dev; dev = dev->next) { if (dev->ops && dev->ops->write_acpi_tables) { current = dev->ops->write_acpi_tables(dev, current, rsdp); current = acpi_align_current(current); } } printk(BIOS_INFO, "ACPI: done.\n"); if (CONFIG(DEBUG_ACPICA_COMPATIBLE)) { printk(BIOS_DEBUG, "Printing ACPI tables in ACPICA compatible format\n"); if (facs) acpidump_print(facs); acpidump_print(dsdt); for (size_t i = 0; xsdt->entry[i] != 0; i++) { acpidump_print((void *)(uintptr_t)xsdt->entry[i]); } printk(BIOS_DEBUG, "Done printing ACPI tables in ACPICA compatible format\n"); } return current; } static acpi_rsdp_t *valid_rsdp(acpi_rsdp_t *rsdp) { if (strncmp((char *)rsdp, RSDP_SIG, sizeof(RSDP_SIG) - 1) != 0) return NULL; printk(BIOS_DEBUG, "Looking on %p for valid checksum\n", rsdp); if (acpi_checksum((void *)rsdp, 20) != 0) return NULL; printk(BIOS_DEBUG, "Checksum 1 passed\n"); if ((rsdp->revision > 1) && (acpi_checksum((void *)rsdp, rsdp->length) != 0)) return NULL; printk(BIOS_DEBUG, "Checksum 2 passed all OK\n"); return rsdp; } void *acpi_find_wakeup_vector(void) { char *p, *end; acpi_xsdt_t *xsdt; acpi_facs_t *facs; acpi_fadt_t *fadt = NULL; acpi_rsdp_t *rsdp = NULL; void *wake_vec; int i; if (!acpi_is_wakeup_s3()) return NULL; printk(BIOS_DEBUG, "Trying to find the wakeup vector...\n"); /* Find RSDP. */ for (p = (char *)0xe0000; p < (char *)0xfffff; p += 16) { rsdp = valid_rsdp((acpi_rsdp_t *)p); if (rsdp) break; } if (rsdp == NULL) { printk(BIOS_ALERT, "No RSDP found, wake up from S3 not possible.\n"); return NULL; } printk(BIOS_DEBUG, "RSDP found at %p\n", rsdp); xsdt = (acpi_xsdt_t *)(uintptr_t)rsdp->xsdt_address; end = (char *)xsdt + xsdt->header.length; printk(BIOS_DEBUG, "XSDT found at %p ends at %p\n", xsdt, end); for (i = 0; ((char *)&xsdt->entry[i]) < end; i++) { fadt = (acpi_fadt_t *)(uintptr_t)xsdt->entry[i]; if (strncmp((char *)fadt, "FACP", 4) == 0) break; fadt = NULL; } if (fadt == NULL) { printk(BIOS_ALERT, "No FADT found, wake up from S3 not possible.\n"); return NULL; } printk(BIOS_DEBUG, "FADT found at %p\n", fadt); facs = (acpi_facs_t *)(uintptr_t)((uint64_t)fadt->x_firmware_ctl_l | (uint64_t)fadt->x_firmware_ctl_h << 32); if (facs == NULL) { printk(BIOS_ALERT, "No FACS found, wake up from S3 not possible.\n"); return NULL; } printk(BIOS_DEBUG, "FACS found at %p\n", facs); wake_vec = (void *)(uintptr_t)facs->firmware_waking_vector; printk(BIOS_DEBUG, "OS waking vector is %p\n", wake_vec); return wake_vec; } __weak int acpi_get_gpe(int gpe) { return -1; /* implemented by SOC */ } u8 get_acpi_fadt_minor_version(void) { return ACPI_FADT_MINOR_VERSION_0; } int get_acpi_table_revision(enum acpi_tables table) { switch (table) { case FADT: return ACPI_FADT_REV_ACPI_6; case MADT: /* ACPI 3.0: 2, ACPI 4.0/5.0: 3, ACPI 6.2b/6.3: 5 */ return 3; case MCFG: return 1; case TCPA: return 2; case TPM2: return 4; case SSDT: /* ACPI 3.0 up to 6.3: 2 */ return 2; case SRAT: /* ACPI 2.0: 1, ACPI 3.0: 2, ACPI 4.0 up to 6.4: 3 */ return 3; case HMAT: /* ACPI 6.4: 2 */ return 2; case DMAR: return 1; case SLIT: /* ACPI 2.0 up to 6.3: 1 */ return 1; case SPMI: /* IMPI 2.0 */ return 5; case HPET: /* Currently 1. Table added in ACPI 2.0. */ return 1; case VFCT: /* ACPI 2.0/3.0/4.0: 1 */ return 1; case IVRS: return IVRS_FORMAT_MIXED; case DBG2: return 0; case FACS: /* ACPI 2.0/3.0: 1, ACPI 4.0 up to 6.3: 2 */ return 1; case RSDT: /* ACPI 1.0 up to 6.3: 1 */ return 1; case XSDT: /* ACPI 2.0 up to 6.3: 1 */ return 1; case RSDP: /* ACPI 2.0 up to 6.3: 2 */ return 2; case EINJ: return 1; case HEST: return 1; case NHLT: return 5; case BERT: return 1; case CEDT: /* CXL 3.0 section 9.17.1 */ return 1; case CRAT: return 1; case LPIT: /* ACPI 5.1 up to 6.3: 0 */ return 0; case SPCR: return 4; case GTDT: return 3; case PPTT: /* ACPI 6.4 */ return 3; case IORT: /* IO Remapping Table E.e */ return 6; case WDAT: return 1; default: return -1; } return -1; }