/* * This file is part of the libpayload project. * * It has originally been taken from the OpenBSD project. */ /* $OpenBSD: sha1.c,v 1.20 2005/08/08 08:05:35 espie Exp $ */ /* * SHA-1 in C * By Steve Reid <steve@edmweb.com> * 100% Public Domain * * Test Vectors (from FIPS PUB 180-1) * "abc" * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 * A million repetitions of "a" * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F */ #include <libpayload-config.h> #include <libpayload.h> typedef u8 u_int8_t; typedef u32 u_int32_t; typedef u64 u_int64_t; typedef unsigned int u_int; /* Moved from libpayload.h */ #if CONFIG(LP_LITTLE_ENDIAN) #define BYTE_ORDER LITTLE_ENDIAN #else #define BYTE_ORDER BIG_ENDIAN #endif #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* * blk0() and blk() perform the initial expand. * I got the idea of expanding during the round function from SSLeay */ #if BYTE_ORDER == LITTLE_ENDIAN # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ |(rol(block->l[i],8)&0x00FF00FF)) #else # define blk0(i) block->l[i] #endif #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ ^block->l[(i+2)&15]^block->l[i&15],1)) /* * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); /* * Hash a single 512-bit block. This is the core of the algorithm. */ void SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH]) { u_int32_t a, b, c, d, e; u_int8_t workspace[SHA1_BLOCK_LENGTH]; typedef union { u_int8_t c[64]; u_int32_t l[16]; } CHAR64LONG16; CHAR64LONG16 *block = (CHAR64LONG16 *)workspace; (void)memcpy(block, buffer, SHA1_BLOCK_LENGTH); /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Wipe variables */ a = b = c = d = e = 0; } /* * SHA1Init - Initialize new context */ void SHA1Init(SHA1_CTX *context) { /* SHA1 initialization constants */ context->count = 0; context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; } /* * Run your data through this. */ void SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len) { size_t i, j; j = (size_t)((context->count >> 3) & 63); context->count += (len << 3); if ((j + len) > 63) { (void)memcpy(&context->buffer[j], data, (i = 64-j)); SHA1Transform(context->state, context->buffer); for ( ; i + 63 < len; i += 64) SHA1Transform(context->state, (u_int8_t *)&data[i]); j = 0; } else { i = 0; } (void)memcpy(&context->buffer[j], &data[i], len - i); } /* * Add padding and return the message digest. */ void SHA1Pad(SHA1_CTX *context) { u_int8_t finalcount[8]; u_int i; for (i = 0; i < 8; i++) { finalcount[i] = (u_int8_t)((context->count >> ((7 - (i & 7)) * 8)) & 255); /* Endian independent */ } SHA1Update(context, (u_int8_t *)"\200", 1); while ((context->count & 504) != 448) SHA1Update(context, (u_int8_t *)"\0", 1); SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ } void SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context) { u_int i; SHA1Pad(context); if (digest) { for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { digest[i] = (u_int8_t) ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } memset(context, 0, sizeof(*context)); } } /** * Compute the SHA-1 hash of the given data as specified by the 'data' and * 'len' arguments, and place the result -- 160 bits (20 bytes) -- into the * specified output buffer 'buf'. * * @param data Pointer to the input data that shall be hashed. * @param len Length of the input data (in bytes). * @param buf Buffer which will hold the resulting hash (must be at * least 20 bytes in size). * @return Pointer to the output buffer where the hash is stored. */ u8 *sha1(const u8 *data, size_t len, u8 *buf) { SHA1_CTX ctx; SHA1Init(&ctx); SHA1Update(&ctx, data, len); SHA1Final(buf, &ctx); return buf; }