From 6a63e8d6830ff6e01454ee116c6df36294818cdb Mon Sep 17 00:00:00 2001 From: mdooley Date: Fri, 17 Nov 2017 10:49:59 -0800 Subject: Adding exponential backoff utilities This cl adds two classes, one to calculate a base multiplier for an exponential backoff series and the other to return sequential values in an exponential backoff series. This cl has a number of advantages over the previous one, such as: - separating the base multiplier calculation from the exponential backoff class so that a standard exponential backoff class like com.google.common.labs.concurrent.RetryStrategy.ExponentialBackoff could be used instead if it becomes open source - allows the backoff sequence to be scaled by specify an initial backoff delay - uses milliseconds instead of arbitrary time units which allows the tolerance to be set automatically when calculating the base multiplier WANT_LGTM=zachh Bug: 66966157 Test: unit tests PiperOrigin-RevId: 176130268 Change-Id: I75135d4df16f642ea9dd3ef9ff9498981beae2c6 --- .../dialer/common/backoff/ExponentialBackoff.java | 96 ++++++++++++++++ .../common/backoff/ExponentialBaseCalculator.java | 126 +++++++++++++++++++++ 2 files changed, 222 insertions(+) create mode 100644 java/com/android/dialer/common/backoff/ExponentialBackoff.java create mode 100644 java/com/android/dialer/common/backoff/ExponentialBaseCalculator.java (limited to 'java/com/android/dialer/common/backoff') diff --git a/java/com/android/dialer/common/backoff/ExponentialBackoff.java b/java/com/android/dialer/common/backoff/ExponentialBackoff.java new file mode 100644 index 000000000..67727d8c2 --- /dev/null +++ b/java/com/android/dialer/common/backoff/ExponentialBackoff.java @@ -0,0 +1,96 @@ +/* + * Copyright (C) 2017 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package com.android.dialer.common.backoff; + +import com.android.dialer.common.Assert; + +/** + * Given an initial backoff delay, D, a base multiplier, B, and a total number of backoffs, N, this + * class returns values in the exponential sequence, D, D*B, D*B^2, ... D*B^(N-1), ... + * + *

Example usage: + * + *

+ *   long initialDelayMillis = 1000;
+ *   double multiplier = 1.2;
+ *   int backoffs = 10;
+ *   ExponentialBackoff backoff = new ExponentialBackoff(initialDelayMillis, multiplier, backoffs);
+ *   while (backoff.isInRange()) {
+ *     ...
+ *     sleep(backoff.getNextBackoff());
+ *   }
+ * 
+ * + *

Note: the base multiplier can be calculated using {@code ExponentialBaseCalculator} + */ +public final class ExponentialBackoff { + public final long initialDelayMillis; + public final double baseMultiplier; + public final int maximumBackoffs; + private double nextBackoff; + private int backoffCount; + + /** + * Setup an exponential backoff with an initial delay, a base multiplier and a maximum number of + * backoff steps. + * + * @throws IllegalArgumentException for negative argument values + */ + public ExponentialBackoff(long initialDelayMillis, double baseMultiplier, int maximumBackoffs) { + Assert.checkArgument(initialDelayMillis > 0); + Assert.checkArgument(baseMultiplier > 0); + Assert.checkArgument(maximumBackoffs > 0); + this.initialDelayMillis = initialDelayMillis; + this.baseMultiplier = baseMultiplier; + this.maximumBackoffs = maximumBackoffs; + reset(); + } + + /** + * @return the next backoff time in the exponential sequence. Specifically, if D is the initial + * delay, B is the base multiplier and N is the total number of backoffs, then the return + * values will be: D, D*B, D*B^2, ... D*B^(N-1), ... + */ + public long getNextBackoff() { + long backoff = Math.round(nextBackoff); + backoffCount++; + nextBackoff *= baseMultiplier; + return backoff; + } + + /** @return the number of times getNextBackoff() has been called */ + public int getBackoffCount() { + return backoffCount; + } + + /** + * @return {@code true} if getNextBackoff() has been called less than the maximumBackoffs value + * specified in the constructor. + */ + public boolean isInRange() { + return backoffCount < maximumBackoffs; + } + + /** + * Reset the sequence of backoff values so the next call to getNextBackoff() will return the + * initial delay and getBackoffCount() will return 0 + */ + public void reset() { + nextBackoff = initialDelayMillis; + backoffCount = 0; + } +} diff --git a/java/com/android/dialer/common/backoff/ExponentialBaseCalculator.java b/java/com/android/dialer/common/backoff/ExponentialBaseCalculator.java new file mode 100644 index 000000000..a1ae8a053 --- /dev/null +++ b/java/com/android/dialer/common/backoff/ExponentialBaseCalculator.java @@ -0,0 +1,126 @@ +/* + * Copyright (C) 2017 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package com.android.dialer.common.backoff; + +import com.android.dialer.common.Assert; + +/** + * Given an initial delay, D, a maximum total backoff time, T, and a maximum number of backoffs, N, + * this class calculates a base multiplier, b, and a scaling factor, g, such that the initial + * backoff is g*b = D and the sum of the scaled backoffs is T = g*b + g*b^2 + g*b^3 + ... g*b^N + * + *

T/D = (1 - b^N)/(1 - b) but this cannot be written as a simple equation for b in terms of T, N + * and D so instead use Newton's method (https://en.wikipedia.org/wiki/Newton%27s_method) to find an + * approximate value for b. + * + *

Example usage using the {@code ExponentialBackoff} would be: + * + *

+ *   // Retry with exponential backoff for up to 2 minutes, with an initial delay of 100 millis
+ *   // and a maximum of 10 retries
+ *   long initialDelayMillis = 100;
+ *   int maxTries = 10;
+ *   double base = ExponentialBaseCalculator.findBase(
+ *       initialDelayMillis,
+ *       TimeUnit.MINUTES.toMillis(2),
+ *       maxTries);
+ *   ExponentialBackoff backoff = new ExponentialBackoff(initialDelayMillis, base, maxTries);
+ *   while (backoff.isInRange()) {
+ *     ...
+ *     long delay = backoff.getNextBackoff();
+ *     // Wait for the indicated time...
+ *   }
+ * 
+ */ +public final class ExponentialBaseCalculator { + private static final int MAX_STEPS = 1000; + private static final double DEFAULT_TOLERANCE_MILLIS = 1; + + /** + * Calculate an exponential backoff base multiplier such that the first backoff delay will be as + * specified and the sum of the delays after doing the indicated maximum number of backoffs will + * be as specified. + * + * @throws IllegalArgumentException if the initial delay is greater than the total backoff time + * @throws IllegalArgumentException if the maximum number of backoffs is not greater than 1 + * @throws IllegalStateException if it fails to find an acceptable base multiplier + */ + public static double findBase( + long initialDelayMillis, long totalBackoffTimeMillis, int maximumBackoffs) { + Assert.checkArgument(initialDelayMillis < totalBackoffTimeMillis); + Assert.checkArgument(maximumBackoffs > 1); + long scaledTotalTime = Math.round(((double) totalBackoffTimeMillis) / initialDelayMillis); + double scaledTolerance = DEFAULT_TOLERANCE_MILLIS / initialDelayMillis; + return getBaseImpl(scaledTotalTime, maximumBackoffs, scaledTolerance); + } + + /** + * T/D = (1 - b^N)/(1 - b) but this cannot be written as a simple equation for b in terms of T, D + * and N so instead we use Newtons method to find an approximate value for b. + * + *

Let f(b) = (1 - b^N)/(1 - b) - T/D then we want to find b* such that f(b*) = 0, or more + * precisely |f(b*)| < tolerance + * + *

Using Newton's method we can interatively find b* as follows: b1 = b0 - f(b0)/f'(b0), where + * b0 is the current best guess for b* and b1 is the next best guess. + * + *

f'(b) = (f(b) + T/D - N*b^(N - 1))/(1 - b) + * + *

so + * + *

b1 = b0 - f(b0)(1 - b0)/(f(b0) + T/D - N*b0^(N - 1)) + */ + private static double getBaseImpl(long t, int n, double tolerance) { + double b0 = 2; // Initial guess for b* + double b0n = Math.pow(b0, n); + double fb0 = f(b0, t, b0n); + if (Math.abs(fb0) < tolerance) { + // Initial guess was pretty good + return b0; + } + + for (int i = 0; i < MAX_STEPS; i++) { + double fpb0 = fp(b0, t, n, fb0, b0n); + double b1 = b0 - fb0 / fpb0; + double b1n = Math.pow(b1, n); + double fb1 = f(b1, t, b1n); + + if (Math.abs(fb1) < tolerance) { + // Found an acceptable value + return b1; + } + + b0 = b1; + b0n = b1n; + fb0 = fb1; + } + + throw new IllegalStateException("Failed to find base. Too many iterations."); + } + + // Evaluate f(b), the function we are trying to find the zero for. + // Note: passing b^N as a parameter so it only has to be calculated once + private static double f(double b, long t, double bn) { + return (1 - bn) / (1 - b) - t; + } + + // Evaluate f'(b), the derivative of the function we are trying to find the zero for. + // Note: passing f(b) and b^N as parameters for efficiency + private static double fp(double b, long t, int n, double fb, double bn) { + return (fb + t - n * bn / b) / (1 - b); + } +} -- cgit v1.2.3