/* Copyright (c) 2017-2019, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation, nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #define LOG_NDEBUG 0 #define LOG_TAG "LocSvc_GnssAdapter" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RAD2DEG (180.0 / M_PI) #define PROCESS_NAME_ENGINE_SERVICE "engine-service" #define MIN_TRACKING_INTERVAL (100) // 100 msec using namespace loc_core; /* Method to fetch status cb from loc_net_iface library */ typedef AgpsCbInfo& (*LocAgpsGetAgpsCbInfo)(LocAgpsOpenResultCb openResultCb, LocAgpsCloseResultCb closeResultCb, void* userDataPtr); static void agpsOpenResultCb (bool isSuccess, AGpsExtType agpsType, const char* apn, AGpsBearerType bearerType, void* userDataPtr); static void agpsCloseResultCb (bool isSuccess, AGpsExtType agpsType, void* userDataPtr); GnssAdapter::GnssAdapter() : LocAdapterBase(0, LocContext::getLocContext(NULL, NULL, LocContext::mLocationHalName, false), true, nullptr), mEngHubProxy(new EngineHubProxyBase()), mLocPositionMode(), mGnssSvIdUsedInPosition(), mGnssSvIdUsedInPosAvail(false), mControlCallbacks(), mAfwControlId(0), mNmeaMask(0), mGnssSvIdConfig(), mGnssSvTypeConfig(), mGnssSvTypeConfigCb(nullptr), mNiData(), mAgpsManager(), mOdcpiRequestCb(nullptr), mOdcpiRequestActive(false), mOdcpiTimer(this), mOdcpiRequest(), mSystemStatus(SystemStatus::getInstance(mMsgTask)), mServerUrl(":"), mXtraObserver(mSystemStatus->getOsObserver(), mMsgTask), mLocSystemInfo{}, mBlockCPIInfo{}, mNfwCb(NULL), mPowerOn(false), mAllowFlpNetworkFixes(0), mGnssEnergyConsumedCb(nullptr), mPowerStateCb(nullptr), mIsE911Session(NULL), mGnssMbSvIdUsedInPosition{}, mGnssMbSvIdUsedInPosAvail(false), mSupportNfwControl(true) { LOC_LOGD("%s]: Constructor %p", __func__, this); mLocPositionMode.mode = LOC_POSITION_MODE_INVALID; pthread_condattr_t condAttr; pthread_condattr_init(&condAttr); pthread_condattr_setclock(&condAttr, CLOCK_MONOTONIC); pthread_cond_init(&mNiData.session.tCond, &condAttr); pthread_cond_init(&mNiData.sessionEs.tCond, &condAttr); pthread_condattr_destroy(&condAttr); /* Set ATL open/close callbacks */ AgpsAtlOpenStatusCb atlOpenStatusCb = [this](int handle, int isSuccess, char* apn, uint32_t apnLen, AGpsBearerType bearerType, AGpsExtType agpsType, LocApnTypeMask mask) { mLocApi->atlOpenStatus( handle, isSuccess, apn, apnLen, bearerType, agpsType, mask); }; AgpsAtlCloseStatusCb atlCloseStatusCb = [this](int handle, int isSuccess) { mLocApi->atlCloseStatus(handle, isSuccess); }; mAgpsManager.registerATLCallbacks(atlOpenStatusCb, atlCloseStatusCb); readConfigCommand(); initDefaultAgpsCommand(); initEngHubProxyCommand(); } void GnssAdapter::setControlCallbacksCommand(LocationControlCallbacks& controlCallbacks) { struct MsgSetControlCallbacks : public LocMsg { GnssAdapter& mAdapter; const LocationControlCallbacks mControlCallbacks; inline MsgSetControlCallbacks(GnssAdapter& adapter, LocationControlCallbacks& controlCallbacks) : LocMsg(), mAdapter(adapter), mControlCallbacks(controlCallbacks) {} inline virtual void proc() const { mAdapter.setControlCallbacks(mControlCallbacks); } }; sendMsg(new MsgSetControlCallbacks(*this, controlCallbacks)); } void GnssAdapter::convertOptions(LocPosMode& out, const TrackingOptions& trackingOptions) { switch (trackingOptions.mode) { case GNSS_SUPL_MODE_MSB: out.mode = LOC_POSITION_MODE_MS_BASED; break; case GNSS_SUPL_MODE_MSA: out.mode = LOC_POSITION_MODE_MS_ASSISTED; break; default: out.mode = LOC_POSITION_MODE_STANDALONE; break; } out.share_position = true; out.min_interval = trackingOptions.minInterval; out.powerMode = trackingOptions.powerMode; out.timeBetweenMeasurements = trackingOptions.tbm; } void GnssAdapter::convertLocation(Location& out, const UlpLocation& ulpLocation, const GpsLocationExtended& locationExtended, const LocPosTechMask techMask) { memset(&out, 0, sizeof(Location)); out.size = sizeof(Location); if (LOC_GPS_LOCATION_HAS_LAT_LONG & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_LAT_LONG_BIT; out.latitude = ulpLocation.gpsLocation.latitude; out.longitude = ulpLocation.gpsLocation.longitude; } if (LOC_GPS_LOCATION_HAS_ALTITUDE & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_ALTITUDE_BIT; out.altitude = ulpLocation.gpsLocation.altitude; } if (LOC_GPS_LOCATION_HAS_SPEED & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_SPEED_BIT; out.speed = ulpLocation.gpsLocation.speed; } if (LOC_GPS_LOCATION_HAS_BEARING & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_BEARING_BIT; out.bearing = ulpLocation.gpsLocation.bearing; } if (LOC_GPS_LOCATION_HAS_ACCURACY & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_ACCURACY_BIT; out.accuracy = ulpLocation.gpsLocation.accuracy; } if (GPS_LOCATION_EXTENDED_HAS_VERT_UNC & locationExtended.flags) { out.flags |= LOCATION_HAS_VERTICAL_ACCURACY_BIT; out.verticalAccuracy = locationExtended.vert_unc; } if (GPS_LOCATION_EXTENDED_HAS_SPEED_UNC & locationExtended.flags) { out.flags |= LOCATION_HAS_SPEED_ACCURACY_BIT; out.speedAccuracy = locationExtended.speed_unc; } if (GPS_LOCATION_EXTENDED_HAS_BEARING_UNC & locationExtended.flags) { out.flags |= LOCATION_HAS_BEARING_ACCURACY_BIT; out.bearingAccuracy = locationExtended.bearing_unc; } out.timestamp = ulpLocation.gpsLocation.timestamp; if (LOC_POS_TECH_MASK_SATELLITE & techMask) { out.techMask |= LOCATION_TECHNOLOGY_GNSS_BIT; } if (LOC_POS_TECH_MASK_CELLID & techMask) { out.techMask |= LOCATION_TECHNOLOGY_CELL_BIT; } if (LOC_POS_TECH_MASK_WIFI & techMask) { out.techMask |= LOCATION_TECHNOLOGY_WIFI_BIT; } if (LOC_POS_TECH_MASK_SENSORS & techMask) { out.techMask |= LOCATION_TECHNOLOGY_SENSORS_BIT; } if (LOC_GPS_LOCATION_HAS_SPOOF_MASK & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_SPOOF_MASK; out.spoofMask = ulpLocation.gpsLocation.spoof_mask; } } /* This is utility routine that computes number of SV used in the fix from the svUsedIdsMask. */ #define MAX_SV_CNT_SUPPORTED_IN_ONE_CONSTELLATION 64 uint16_t GnssAdapter::getNumSvUsed(uint64_t svUsedIdsMask, int totalSvCntInThisConstellation) { if (totalSvCntInThisConstellation > MAX_SV_CNT_SUPPORTED_IN_ONE_CONSTELLATION) { LOC_LOGe ("error: total SV count in this constellation %d exceeded limit of %d", totalSvCntInThisConstellation, MAX_SV_CNT_SUPPORTED_IN_ONE_CONSTELLATION); return 0; } uint16_t numSvUsed = 0; uint64_t mask = 0x1; for (int i = 0; i < totalSvCntInThisConstellation; i++) { if (svUsedIdsMask & mask) { numSvUsed++; } mask <<= 1; } return numSvUsed; } void GnssAdapter::convertLocationInfo(GnssLocationInfoNotification& out, const GpsLocationExtended& locationExtended) { out.size = sizeof(GnssLocationInfoNotification); if (GPS_LOCATION_EXTENDED_HAS_ALTITUDE_MEAN_SEA_LEVEL & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_ALTITUDE_MEAN_SEA_LEVEL_BIT; out.altitudeMeanSeaLevel = locationExtended.altitudeMeanSeaLevel; } if (GPS_LOCATION_EXTENDED_HAS_EXT_DOP & locationExtended.flags) { out.flags |= (GNSS_LOCATION_INFO_DOP_BIT|GNSS_LOCATION_INFO_EXT_DOP_BIT); out.pdop = locationExtended.extDOP.PDOP; out.hdop = locationExtended.extDOP.HDOP; out.vdop = locationExtended.extDOP.VDOP; out.gdop = locationExtended.extDOP.GDOP; out.tdop = locationExtended.extDOP.TDOP; } else if (GPS_LOCATION_EXTENDED_HAS_DOP & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_DOP_BIT; out.pdop = locationExtended.pdop; out.hdop = locationExtended.hdop; out.vdop = locationExtended.vdop; } if (GPS_LOCATION_EXTENDED_HAS_MAG_DEV & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_MAGNETIC_DEVIATION_BIT; out.magneticDeviation = locationExtended.magneticDeviation; } if (GPS_LOCATION_EXTENDED_HAS_HOR_RELIABILITY & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_HOR_RELIABILITY_BIT; switch (locationExtended.horizontal_reliability) { case LOC_RELIABILITY_VERY_LOW: out.horReliability = LOCATION_RELIABILITY_VERY_LOW; break; case LOC_RELIABILITY_LOW: out.horReliability = LOCATION_RELIABILITY_LOW; break; case LOC_RELIABILITY_MEDIUM: out.horReliability = LOCATION_RELIABILITY_MEDIUM; break; case LOC_RELIABILITY_HIGH: out.horReliability = LOCATION_RELIABILITY_HIGH; break; default: out.horReliability = LOCATION_RELIABILITY_NOT_SET; break; } } if (GPS_LOCATION_EXTENDED_HAS_VERT_RELIABILITY & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_VER_RELIABILITY_BIT; switch (locationExtended.vertical_reliability) { case LOC_RELIABILITY_VERY_LOW: out.verReliability = LOCATION_RELIABILITY_VERY_LOW; break; case LOC_RELIABILITY_LOW: out.verReliability = LOCATION_RELIABILITY_LOW; break; case LOC_RELIABILITY_MEDIUM: out.verReliability = LOCATION_RELIABILITY_MEDIUM; break; case LOC_RELIABILITY_HIGH: out.verReliability = LOCATION_RELIABILITY_HIGH; break; default: out.verReliability = LOCATION_RELIABILITY_NOT_SET; break; } } if (GPS_LOCATION_EXTENDED_HAS_HOR_ELIP_UNC_MAJOR & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_HOR_ACCURACY_ELIP_SEMI_MAJOR_BIT; out.horUncEllipseSemiMajor = locationExtended.horUncEllipseSemiMajor; } if (GPS_LOCATION_EXTENDED_HAS_HOR_ELIP_UNC_MINOR & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_HOR_ACCURACY_ELIP_SEMI_MINOR_BIT; out.horUncEllipseSemiMinor = locationExtended.horUncEllipseSemiMinor; } if (GPS_LOCATION_EXTENDED_HAS_HOR_ELIP_UNC_AZIMUTH & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_HOR_ACCURACY_ELIP_AZIMUTH_BIT; out.horUncEllipseOrientAzimuth = locationExtended.horUncEllipseOrientAzimuth; } if (GPS_LOCATION_EXTENDED_HAS_NORTH_STD_DEV & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_NORTH_STD_DEV_BIT; out.northStdDeviation = locationExtended.northStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_EAST_STD_DEV & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_EAST_STD_DEV_BIT; out.eastStdDeviation = locationExtended.eastStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_NORTH_VEL & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_NORTH_VEL_BIT; out.northVelocity = locationExtended.northVelocity; } if (GPS_LOCATION_EXTENDED_HAS_NORTH_VEL_UNC & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_NORTH_VEL_UNC_BIT; out.northVelocityStdDeviation = locationExtended.northVelocityStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_EAST_VEL & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_EAST_VEL_BIT; out.eastVelocity = locationExtended.eastVelocity; } if (GPS_LOCATION_EXTENDED_HAS_EAST_VEL_UNC & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_EAST_VEL_UNC_BIT; out.eastVelocityStdDeviation = locationExtended.eastVelocityStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_UP_VEL & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_UP_VEL_BIT; out.upVelocity = locationExtended.upVelocity; } if (GPS_LOCATION_EXTENDED_HAS_UP_VEL_UNC & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_UP_VEL_UNC_BIT; out.upVelocityStdDeviation = locationExtended.upVelocityStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_GNSS_SV_USED_DATA & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_GNSS_SV_USED_DATA_BIT; out.svUsedInPosition.gpsSvUsedIdsMask = locationExtended.gnss_sv_used_ids.gps_sv_used_ids_mask; out.svUsedInPosition.gloSvUsedIdsMask = locationExtended.gnss_sv_used_ids.glo_sv_used_ids_mask; out.svUsedInPosition.galSvUsedIdsMask = locationExtended.gnss_sv_used_ids.gal_sv_used_ids_mask; out.svUsedInPosition.bdsSvUsedIdsMask = locationExtended.gnss_sv_used_ids.bds_sv_used_ids_mask; out.svUsedInPosition.qzssSvUsedIdsMask = locationExtended.gnss_sv_used_ids.qzss_sv_used_ids_mask; out.flags |= GNSS_LOCATION_INFO_NUM_SV_USED_IN_POSITION_BIT; out.numSvUsedInPosition = getNumSvUsed(out.svUsedInPosition.gpsSvUsedIdsMask, GPS_SV_PRN_MAX - GPS_SV_PRN_MIN + 1); out.numSvUsedInPosition += getNumSvUsed(out.svUsedInPosition.gloSvUsedIdsMask, GLO_SV_PRN_MAX - GLO_SV_PRN_MIN + 1); out.numSvUsedInPosition += getNumSvUsed(out.svUsedInPosition.qzssSvUsedIdsMask, QZSS_SV_PRN_MAX - QZSS_SV_PRN_MIN + 1); out.numSvUsedInPosition += getNumSvUsed(out.svUsedInPosition.bdsSvUsedIdsMask, BDS_SV_PRN_MAX - BDS_SV_PRN_MIN + 1); out.numSvUsedInPosition += getNumSvUsed(out.svUsedInPosition.galSvUsedIdsMask, GAL_SV_PRN_MAX - GAL_SV_PRN_MIN + 1); out.numOfMeasReceived = locationExtended.numOfMeasReceived; for (int idx =0; idx < locationExtended.numOfMeasReceived; idx++) { out.measUsageInfo[idx].gnssSignalType = locationExtended.measUsageInfo[idx].gnssSignalType; out.measUsageInfo[idx].gnssSvId = locationExtended.measUsageInfo[idx].gnssSvId; out.measUsageInfo[idx].gnssConstellation = locationExtended.measUsageInfo[idx].gnssConstellation; } } if (GPS_LOCATION_EXTENDED_HAS_NAV_SOLUTION_MASK & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_NAV_SOLUTION_MASK_BIT; out.navSolutionMask = locationExtended.navSolutionMask; } if (GPS_LOCATION_EXTENDED_HAS_POS_TECH_MASK & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_POS_TECH_MASK_BIT; out.posTechMask = locationExtended.tech_mask; } if (GPS_LOCATION_EXTENDED_HAS_POS_DYNAMICS_DATA & locationExtended.flags) { out.flags |= GPS_LOCATION_EXTENDED_HAS_POS_DYNAMICS_DATA; if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_LONG_ACCEL_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_LONG_ACCEL_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_LAT_ACCEL_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_LAT_ACCEL_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_VERT_ACCEL_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_VERT_ACCEL_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_YAW_RATE_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_YAW_RATE_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_PITCH_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_PITCH_BIT; } out.bodyFrameData.longAccel = locationExtended.bodyFrameData.longAccel; out.bodyFrameData.latAccel = locationExtended.bodyFrameData.latAccel; out.bodyFrameData.vertAccel = locationExtended.bodyFrameData.vertAccel; out.bodyFrameData.yawRate = locationExtended.bodyFrameData.yawRate; out.bodyFrameData.pitch = locationExtended.bodyFrameData.pitch; } if (GPS_LOCATION_EXTENDED_HAS_GPS_TIME & locationExtended.flags) { out.flags |= GPS_LOCATION_EXTENDED_HAS_GPS_TIME; out.gnssSystemTime.gnssSystemTimeSrc = locationExtended.gnssSystemTime.gnssSystemTimeSrc; out.gnssSystemTime.u = locationExtended.gnssSystemTime.u; } if (GPS_LOCATION_EXTENDED_HAS_NORTH_VEL & locationExtended.flags) { out.flags |= GPS_LOCATION_EXTENDED_HAS_NORTH_VEL; out.northVelocity = locationExtended.northVelocity; } if (GPS_LOCATION_EXTENDED_HAS_EAST_VEL & locationExtended.flags) { out.flags |= GPS_LOCATION_EXTENDED_HAS_EAST_VEL; out.eastVelocity = locationExtended.eastVelocity; } if (GPS_LOCATION_EXTENDED_HAS_UP_VEL & locationExtended.flags) { out.flags |= GPS_LOCATION_EXTENDED_HAS_UP_VEL; out.upVelocity = locationExtended.upVelocity; } if (GPS_LOCATION_EXTENDED_HAS_NORTH_VEL_UNC & locationExtended.flags) { out.flags |= GPS_LOCATION_EXTENDED_HAS_NORTH_VEL_UNC; out.northVelocityStdDeviation = locationExtended.northVelocityStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_EAST_VEL_UNC & locationExtended.flags) { out.flags |= GPS_LOCATION_EXTENDED_HAS_EAST_VEL_UNC; out.eastVelocityStdDeviation = locationExtended.eastVelocityStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_UP_VEL_UNC & locationExtended.flags) { out.flags |= GPS_LOCATION_EXTENDED_HAS_UP_VEL_UNC; out.upVelocityStdDeviation = locationExtended.upVelocityStdDeviation; } // Validity of this structure is established from the timeSrc of the GnssSystemTime structure. out.gnssSystemTime = locationExtended.gnssSystemTime; if (GPS_LOCATION_EXTENDED_HAS_LEAP_SECONDS & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_LEAP_SECONDS_BIT; out.leapSeconds = locationExtended.leapSeconds; } if (GPS_LOCATION_EXTENDED_HAS_TIME_UNC & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_TIME_UNC_BIT; out.timeUncMs = locationExtended.timeUncMs; } if (GPS_LOCATION_EXTENDED_HAS_CALIBRATION_CONFIDENCE & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_CALIBRATION_CONFIDENCE_BIT; out.calibrationConfidence = locationExtended.calibrationConfidence; } if (GPS_LOCATION_EXTENDED_HAS_CALIBRATION_STATUS & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_CALIBRATION_STATUS_BIT; out.calibrationStatus = locationExtended.calibrationStatus; } if (GPS_LOCATION_EXTENDED_HAS_OUTPUT_ENG_TYPE & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_OUTPUT_ENG_TYPE_BIT; out.locOutputEngType = locationExtended.locOutputEngType; } if (GPS_LOCATION_EXTENDED_HAS_OUTPUT_ENG_MASK & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_OUTPUT_ENG_MASK_BIT; out.locOutputEngMask = locationExtended.locOutputEngMask; } } inline uint32_t GnssAdapter::convertSuplVersion(const GnssConfigSuplVersion suplVersion) { switch (suplVersion) { case GNSS_CONFIG_SUPL_VERSION_2_0_0: return 0x00020000; case GNSS_CONFIG_SUPL_VERSION_2_0_2: return 0x00020002; case GNSS_CONFIG_SUPL_VERSION_1_0_0: default: return 0x00010000; } } inline uint32_t GnssAdapter::convertLppProfile(const GnssConfigLppProfile lppProfile) { switch (lppProfile) { case GNSS_CONFIG_LPP_PROFILE_USER_PLANE: return 1; case GNSS_CONFIG_LPP_PROFILE_CONTROL_PLANE: return 2; case GNSS_CONFIG_LPP_PROFILE_USER_PLANE_AND_CONTROL_PLANE: return 3; case GNSS_CONFIG_LPP_PROFILE_RRLP_ON_LTE: default: return 0; } } uint32_t GnssAdapter::convertLppeCp(const GnssConfigLppeControlPlaneMask lppeControlPlaneMask) { uint32_t mask = 0; if (GNSS_CONFIG_LPPE_CONTROL_PLANE_DBH_BIT & lppeControlPlaneMask) { mask |= (1<<0); } if (GNSS_CONFIG_LPPE_CONTROL_PLANE_WLAN_AP_MEASUREMENTS_BIT & lppeControlPlaneMask) { mask |= (1<<1); } if (GNSS_CONFIG_LPPE_CONTROL_PLANE_SRN_AP_MEASUREMENTS_BIT & lppeControlPlaneMask) { mask |= (1<<2); } if (GNSS_CONFIG_LPPE_CONTROL_PLANE_SENSOR_BARO_MEASUREMENTS_BIT & lppeControlPlaneMask) { mask |= (1<<3); } return mask; } uint32_t GnssAdapter::convertLppeUp(const GnssConfigLppeUserPlaneMask lppeUserPlaneMask) { uint32_t mask = 0; if (GNSS_CONFIG_LPPE_USER_PLANE_DBH_BIT & lppeUserPlaneMask) { mask |= (1<<0); } if (GNSS_CONFIG_LPPE_USER_PLANE_WLAN_AP_MEASUREMENTS_BIT & lppeUserPlaneMask) { mask |= (1<<1); } if (GNSS_CONFIG_LPPE_USER_PLANE_SRN_AP_MEASUREMENTS_BIT & lppeUserPlaneMask) { mask |= (1<<2); } if (GNSS_CONFIG_LPPE_USER_PLANE_SENSOR_BARO_MEASUREMENTS_BIT & lppeUserPlaneMask) { mask |= (1<<3); } return mask; } uint32_t GnssAdapter::convertAGloProt(const GnssConfigAGlonassPositionProtocolMask aGloPositionProtocolMask) { uint32_t mask = 0; if (GNSS_CONFIG_RRC_CONTROL_PLANE_BIT & aGloPositionProtocolMask) { mask |= (1<<0); } if (GNSS_CONFIG_RRLP_USER_PLANE_BIT & aGloPositionProtocolMask) { mask |= (1<<1); } if (GNSS_CONFIG_LLP_USER_PLANE_BIT & aGloPositionProtocolMask) { mask |= (1<<2); } if (GNSS_CONFIG_LLP_CONTROL_PLANE_BIT & aGloPositionProtocolMask) { mask |= (1<<3); } return mask; } uint32_t GnssAdapter::convertEP4ES(const GnssConfigEmergencyPdnForEmergencySupl emergencyPdnForEmergencySupl) { switch (emergencyPdnForEmergencySupl) { case GNSS_CONFIG_EMERGENCY_PDN_FOR_EMERGENCY_SUPL_YES: return 1; case GNSS_CONFIG_EMERGENCY_PDN_FOR_EMERGENCY_SUPL_NO: default: return 0; } } uint32_t GnssAdapter::convertSuplEs(const GnssConfigSuplEmergencyServices suplEmergencyServices) { switch (suplEmergencyServices) { case GNSS_CONFIG_SUPL_EMERGENCY_SERVICES_YES: return 1; case GNSS_CONFIG_SUPL_EMERGENCY_SERVICES_NO: default: return 0; } } uint32_t GnssAdapter::convertSuplMode(const GnssConfigSuplModeMask suplModeMask) { uint32_t mask = 0; if (GNSS_CONFIG_SUPL_MODE_MSB_BIT & suplModeMask) { mask |= (1<<0); } if (GNSS_CONFIG_SUPL_MODE_MSA_BIT & suplModeMask) { mask |= (1<<1); } return mask; } void GnssAdapter::readConfigCommand() { LOC_LOGD("%s]: ", __func__); struct MsgReadConfig : public LocMsg { GnssAdapter* mAdapter; ContextBase& mContext; inline MsgReadConfig(GnssAdapter* adapter, ContextBase& context) : LocMsg(), mAdapter(adapter), mContext(context) {} inline virtual void proc() const { static bool confReadDone = false; if (!confReadDone) { confReadDone = true; // reads config into mContext->mGps_conf mContext.readConfig(); uint32_t allowFlpNetworkFixes = 0; static const loc_param_s_type flp_conf_param_table[] = { {"ALLOW_NETWORK_FIXES", &allowFlpNetworkFixes, NULL, 'n'}, }; UTIL_READ_CONF(LOC_PATH_FLP_CONF, flp_conf_param_table); LOC_LOGd("allowFlpNetworkFixes %u", allowFlpNetworkFixes); mAdapter->setAllowFlpNetworkFixes(allowFlpNetworkFixes); } } }; if (mContext != NULL) { sendMsg(new MsgReadConfig(this, *mContext)); } } void GnssAdapter::setSuplHostServer(const char* server, int port, LocServerType type) { if (ContextBase::mGps_conf.AGPS_CONFIG_INJECT) { char serverUrl[MAX_URL_LEN] = {}; int32_t length = -1; const char noHost[] = "NONE"; if ((NULL == server) || (server[0] == 0) || (strncasecmp(noHost, server, sizeof(noHost)) == 0)) { serverUrl[0] = '\0'; length = 0; } else if (port > 0) { length = snprintf(serverUrl, sizeof(serverUrl), "%s:%u", server, port); } if (LOC_AGPS_SUPL_SERVER != type && LOC_AGPS_MO_SUPL_SERVER != type) { LOC_LOGe("Invalid type=%d", type); } else if (length >= 0) { if (LOC_AGPS_SUPL_SERVER == type) { getServerUrl().assign(serverUrl); strlcpy(ContextBase::mGps_conf.SUPL_HOST, server, LOC_MAX_PARAM_STRING); ContextBase::mGps_conf.SUPL_PORT = port; } else { if (strncasecmp(getMoServerUrl().c_str(), serverUrl, sizeof(serverUrl)) != 0) { getMoServerUrl().assign(serverUrl); } } } } } void GnssAdapter::setConfig() { LOC_LOGD("%s]: ", __func__); // set nmea mask type uint32_t mask = 0; if (NMEA_PROVIDER_MP == ContextBase::mGps_conf.NMEA_PROVIDER) { mask |= LOC_NMEA_ALL_GENERAL_SUPPORTED_MASK; } if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_DEBUG_NMEA_V02)) { mask |= LOC_NMEA_MASK_DEBUG_V02; } if (mNmeaMask != mask) { mNmeaMask = mask; if (mNmeaMask) { for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if ((it->second.gnssNmeaCb != nullptr)) { updateEvtMask(LOC_API_ADAPTER_BIT_NMEA_1HZ_REPORT, LOC_REGISTRATION_MASK_ENABLED); break; } } } } std::string oldMoServerUrl = getMoServerUrl(); setSuplHostServer(ContextBase::mGps_conf.SUPL_HOST, ContextBase::mGps_conf.SUPL_PORT, LOC_AGPS_SUPL_SERVER); setSuplHostServer(ContextBase::mGps_conf.MO_SUPL_HOST, ContextBase::mGps_conf.MO_SUPL_PORT, LOC_AGPS_MO_SUPL_SERVER); // inject the configurations into modem loc_gps_cfg_s gpsConf = ContextBase::mGps_conf; loc_sap_cfg_s_type sapConf = ContextBase::mSap_conf; //cache the injected configuration with GnssConfigRequested struct GnssConfig gnssConfigRequested = {}; gnssConfigRequested.flags |= GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT | GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT; /* Here we process an SSR. We need to set the GPS_LOCK to the proper values, as follows: 1. Q behavior. This is identified by mSupportNfwControl being 1. In this case ContextBase::mGps_conf.GPS_LOCK is a "state", meaning it should reflect the NV value. Therefore we will set the NV to ContextBase::mGps_conf.GPS_LOCK 2. P behavior. This is identified by mSupportNfwControl being 0. In this case ContextBase::mGps_conf.GPS_LOCK is a "configuration", meaning it should hold the "mask" for NI. There are two subcases: a. Location enabled in GUI (1 == getAfwControlId()). We need to set the NV to GNSS_CONFIG_GPS_LOCK_NONE (both MO and NI enabled) b. Location disabled in GUI (0 == getAfwControlId()). We need to set the NV to ContextBase::mGps_conf.GPS_LOCK (the "mask", which is SIM-card specific) */ if (mSupportNfwControl || (0 == getAfwControlId())) { gnssConfigRequested.gpsLock = gpsConf.GPS_LOCK; } else { gnssConfigRequested.gpsLock = GNSS_CONFIG_GPS_LOCK_NONE; } if (gpsConf.AGPS_CONFIG_INJECT) { gnssConfigRequested.flags |= GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT | GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT | GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT | GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT; gnssConfigRequested.suplVersion = mLocApi->convertSuplVersion(gpsConf.SUPL_VER); gnssConfigRequested.lppProfile = mLocApi->convertLppProfile(gpsConf.LPP_PROFILE); gnssConfigRequested.aGlonassPositionProtocolMask = gpsConf.A_GLONASS_POS_PROTOCOL_SELECT; } if (gpsConf.LPPE_CP_TECHNOLOGY) { gnssConfigRequested.flags |= GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT; gnssConfigRequested.lppeControlPlaneMask = mLocApi->convertLppeCp(gpsConf.LPPE_CP_TECHNOLOGY); } if (gpsConf.LPPE_UP_TECHNOLOGY) { gnssConfigRequested.flags |= GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT; gnssConfigRequested.lppeUserPlaneMask = mLocApi->convertLppeUp(gpsConf.LPPE_UP_TECHNOLOGY); } gnssConfigRequested.blacklistedSvIds.assign(mBlacklistedSvIds.begin(), mBlacklistedSvIds.end()); mLocApi->sendMsg(new LocApiMsg( [this, gpsConf, sapConf, oldMoServerUrl, gnssConfigRequested] () { gnssUpdateConfig(oldMoServerUrl, gnssConfigRequested, gnssConfigRequested); // set nmea mask type uint32_t mask = 0; if (NMEA_PROVIDER_MP == gpsConf.NMEA_PROVIDER) { mask |= LOC_NMEA_ALL_GENERAL_SUPPORTED_MASK; } if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_DEBUG_NMEA_V02)) { mask |= LOC_NMEA_MASK_DEBUG_V02; } if (mask != 0) { mLocApi->setNMEATypesSync(mask); } mLocApi->setXtraVersionCheckSync(gpsConf.XTRA_VERSION_CHECK); mLocApi->setConstrainedTuncMode( gpsConf.CONSTRAINED_TIME_UNCERTAINTY_ENABLED == 1, (float)gpsConf.CONSTRAINED_TIME_UNCERTAINTY_THRESHOLD, gpsConf.CONSTRAINED_TIME_UNCERTAINTY_ENERGY_BUDGET); mLocApi->setPositionAssistedClockEstimatorMode( gpsConf.POSITION_ASSISTED_CLOCK_ESTIMATOR_ENABLED == 1); if (sapConf.GYRO_BIAS_RANDOM_WALK_VALID || sapConf.ACCEL_RANDOM_WALK_SPECTRAL_DENSITY_VALID || sapConf.ANGLE_RANDOM_WALK_SPECTRAL_DENSITY_VALID || sapConf.RATE_RANDOM_WALK_SPECTRAL_DENSITY_VALID || sapConf.VELOCITY_RANDOM_WALK_SPECTRAL_DENSITY_VALID ) { mLocApi->setSensorPropertiesSync( sapConf.GYRO_BIAS_RANDOM_WALK_VALID, sapConf.GYRO_BIAS_RANDOM_WALK, sapConf.ACCEL_RANDOM_WALK_SPECTRAL_DENSITY_VALID, sapConf.ACCEL_RANDOM_WALK_SPECTRAL_DENSITY, sapConf.ANGLE_RANDOM_WALK_SPECTRAL_DENSITY_VALID, sapConf.ANGLE_RANDOM_WALK_SPECTRAL_DENSITY, sapConf.RATE_RANDOM_WALK_SPECTRAL_DENSITY_VALID, sapConf.RATE_RANDOM_WALK_SPECTRAL_DENSITY, sapConf.VELOCITY_RANDOM_WALK_SPECTRAL_DENSITY_VALID, sapConf.VELOCITY_RANDOM_WALK_SPECTRAL_DENSITY); } mLocApi->setSensorPerfControlConfigSync( sapConf.SENSOR_CONTROL_MODE, sapConf.SENSOR_ACCEL_SAMPLES_PER_BATCH, sapConf.SENSOR_ACCEL_BATCHES_PER_SEC, sapConf.SENSOR_GYRO_SAMPLES_PER_BATCH, sapConf.SENSOR_GYRO_BATCHES_PER_SEC, sapConf.SENSOR_ACCEL_SAMPLES_PER_BATCH_HIGH, sapConf.SENSOR_ACCEL_BATCHES_PER_SEC_HIGH, sapConf.SENSOR_GYRO_SAMPLES_PER_BATCH_HIGH, sapConf.SENSOR_GYRO_BATCHES_PER_SEC_HIGH, sapConf.SENSOR_ALGORITHM_CONFIG_MASK); } )); } std::vector GnssAdapter::gnssUpdateConfig(const std::string& oldMoServerUrl, const GnssConfig& gnssConfigRequested, const GnssConfig& gnssConfigNeedEngineUpdate, size_t count) { loc_gps_cfg_s gpsConf = ContextBase::mGps_conf; size_t index = 0; LocationError err = LOCATION_ERROR_SUCCESS; std::vector errsList = {err}; if (count > 0) { errsList.insert(errsList.begin(), count, LOCATION_ERROR_SUCCESS); } std::string serverUrl = getServerUrl(); std::string moServerUrl = getMoServerUrl(); int serverUrlLen = serverUrl.length(); int moServerUrlLen = moServerUrl.length(); if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT) { err = mLocApi->setGpsLockSync(gnssConfigRequested.gpsLock); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT) { if (gnssConfigNeedEngineUpdate.assistanceServer.type == GNSS_ASSISTANCE_TYPE_SUPL) { err = mLocApi->setServerSync( serverUrl.c_str(), serverUrlLen, LOC_AGPS_SUPL_SERVER); if (index < count) { errsList[index] = err; } if (0 != oldMoServerUrl.compare(moServerUrl)) { LocationError locErr = mLocApi->setServerSync(moServerUrl.c_str(), moServerUrlLen, LOC_AGPS_MO_SUPL_SERVER); if (locErr != LOCATION_ERROR_SUCCESS) { LOC_LOGe("Error while setting MO SUPL_HOST server:%s", moServerUrl.c_str()); } } } else if (gnssConfigNeedEngineUpdate.assistanceServer.type == GNSS_ASSISTANCE_TYPE_C2K) { struct in_addr addr; struct hostent* hp; bool resolveAddrSuccess = true; hp = gethostbyname( gnssConfigNeedEngineUpdate.assistanceServer.hostName); if (hp != NULL) { /* DNS OK */ memcpy(&addr, hp->h_addr_list[0], hp->h_length); } else { /* Try IP representation */ if (inet_aton( gnssConfigNeedEngineUpdate.assistanceServer.hostName, &addr) == 0) { /* IP not valid */ LOC_LOGE("%s]: hostname '%s' cannot be resolved ", __func__, gnssConfigNeedEngineUpdate.assistanceServer.hostName); if (index < count) { errsList[index] = LOCATION_ERROR_INVALID_PARAMETER; } } else { resolveAddrSuccess = false; } } if (resolveAddrSuccess) { unsigned int ip = htonl(addr.s_addr); err = mLocApi->setServerSync(ip, gnssConfigNeedEngineUpdate.assistanceServer.port, LOC_AGPS_CDMA_PDE_SERVER); if (index < count) { errsList[index] = err; } } } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT) { err = mLocApi->setSUPLVersionSync(gnssConfigRequested.suplVersion); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT) { err = mLocApi->setLPPConfigSync(gnssConfigRequested.lppProfile); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT) { err = mLocApi->setLPPeProtocolCpSync( gnssConfigRequested.lppeControlPlaneMask); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT) { err = mLocApi->setLPPeProtocolUpSync( gnssConfigRequested.lppeUserPlaneMask); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT) { err = mLocApi->setAGLONASSProtocolSync( gnssConfigRequested.aGlonassPositionProtocolMask); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT) { // Check if feature is supported if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature constellation enablement not supported."); err = LOCATION_ERROR_NOT_SUPPORTED; } else { // Send the SV ID Config to Modem mBlacklistedSvIds.assign(gnssConfigRequested.blacklistedSvIds.begin(), gnssConfigRequested.blacklistedSvIds.end()); err = gnssSvIdConfigUpdateSync(gnssConfigRequested.blacklistedSvIds); if (LOCATION_ERROR_SUCCESS != err) { LOC_LOGe("Failed to send config to modem, err %d", err); } } if (index < count) { errsList[index] = err; } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_EMERGENCY_EXTENSION_SECONDS_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_EMERGENCY_EXTENSION_SECONDS_BIT) { err = mLocApi->setEmergencyExtensionWindowSync( gnssConfigRequested.emergencyExtensionSeconds); if (index < count) { errsList[index] = err; } } index++; } return errsList; } uint32_t* GnssAdapter::gnssUpdateConfigCommand(GnssConfig config) { // count the number of bits set GnssConfigFlagsMask flagsCopy = config.flags; size_t count = 0; while (flagsCopy > 0) { if (flagsCopy & 1) { count++; } flagsCopy >>= 1; } std::string idsString = "["; uint32_t* ids = NULL; if (count > 0) { ids = new uint32_t[count]; if (ids == nullptr) { LOC_LOGE("%s] new allocation failed, fatal error.", __func__); return nullptr; } for (size_t i=0; i < count; ++i) { ids[i] = generateSessionId(); IF_LOC_LOGD { idsString += std::to_string(ids[i]) + " "; } } } idsString += "]"; LOC_LOGD("%s]: ids %s flags 0x%X", __func__, idsString.c_str(), config.flags); struct MsgGnssUpdateConfig : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; GnssConfig mConfig; size_t mCount; uint32_t* mIds; inline MsgGnssUpdateConfig(GnssAdapter& adapter, LocApiBase& api, GnssConfig config, uint32_t* ids, size_t count) : LocMsg(), mAdapter(adapter), mApi(api), mConfig(config), mCount(count), mIds(ids) {} inline MsgGnssUpdateConfig(const MsgGnssUpdateConfig& obj) : MsgGnssUpdateConfig(obj.mAdapter, obj.mApi, obj.mConfig, new uint32_t[obj.mCount], obj.mCount) { if (mIds != nullptr) { for (int i = 0; i < mCount; ++i) { mIds[i] = obj.mIds[i]; } } } inline virtual ~MsgGnssUpdateConfig() { delete[] mIds; } inline virtual void proc() const { if (!mAdapter.isEngineCapabilitiesKnown()) { mAdapter.mPendingMsgs.push_back(new MsgGnssUpdateConfig(*this)); return; } GnssAdapter& adapter = mAdapter; size_t countOfConfigs = mCount; GnssConfig gnssConfigRequested = mConfig; GnssConfig gnssConfigNeedEngineUpdate = mConfig; std::vector sessionIds; sessionIds.assign(mIds, mIds + mCount); std::vector errs(mCount, LOCATION_ERROR_SUCCESS); int index = 0; if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT) { GnssConfigGpsLock newGpsLock = gnssConfigRequested.gpsLock; newGpsLock |= GNSS_CONFIG_GPS_LOCK_MO; ContextBase::mGps_conf.GPS_LOCK = newGpsLock; /* If we get here it means that the changes in the framework to request for 'P' behavior were made, and therefore we need to "behave" as in 'P' However, we need to determine if enableCommand function has already been called, since it could get called before this function.*/ if (0 != mAdapter.getAfwControlId()) { /* enableCommand function has already been called since getAfwControlId returns non zero. Now there are two possible cases: 1. This is the first time this function is called (mSupportNfwControl is true). We need to behave as in 'P', but for the first time, meaning MO was enabled, but NI was not, so we need to unlock NI 2. This is not the first time this function is called, meaning we are already behaving as in 'P'. No need to update the configuration in this case (return to 'P' code) */ if (mAdapter.mSupportNfwControl) { // case 1 above newGpsLock = GNSS_CONFIG_GPS_LOCK_NONE; } else { // case 2 above gnssConfigNeedEngineUpdate.flags &= ~(GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT); } } gnssConfigRequested.gpsLock = newGpsLock; mAdapter.mSupportNfwControl = false; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT) { uint32_t newSuplVersion = mAdapter.convertSuplVersion(gnssConfigRequested.suplVersion); ContextBase::mGps_conf.SUPL_VER = newSuplVersion; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT) { if (GNSS_ASSISTANCE_TYPE_SUPL == mConfig.assistanceServer.type) { mAdapter.setSuplHostServer(mConfig.assistanceServer.hostName, mConfig.assistanceServer.port, LOC_AGPS_SUPL_SERVER); } else { LOC_LOGE("%s]: Not a valid gnss assistance type %u", __func__, mConfig.assistanceServer.type); errs.at(index) = LOCATION_ERROR_INVALID_PARAMETER; gnssConfigNeedEngineUpdate.flags &= ~(GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT); } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT) { uint32_t newLppProfile = mAdapter.convertLppProfile(gnssConfigRequested.lppProfile); ContextBase::mGps_conf.LPP_PROFILE = newLppProfile; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT) { uint32_t newLppeControlPlaneMask = mAdapter.convertLppeCp(gnssConfigRequested.lppeControlPlaneMask); ContextBase::mGps_conf.LPPE_CP_TECHNOLOGY = newLppeControlPlaneMask; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT) { uint32_t newLppeUserPlaneMask = mAdapter.convertLppeUp(gnssConfigRequested.lppeUserPlaneMask); ContextBase::mGps_conf.LPPE_UP_TECHNOLOGY = newLppeUserPlaneMask; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT) { uint32_t newAGloProtMask = mAdapter.convertAGloProt(gnssConfigRequested.aGlonassPositionProtocolMask); ContextBase::mGps_conf.A_GLONASS_POS_PROTOCOL_SELECT = newAGloProtMask; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_EM_PDN_FOR_EM_SUPL_VALID_BIT) { uint32_t newEP4ES = mAdapter.convertEP4ES( gnssConfigRequested.emergencyPdnForEmergencySupl); if (newEP4ES != ContextBase::mGps_conf.USE_EMERGENCY_PDN_FOR_EMERGENCY_SUPL) { ContextBase::mGps_conf.USE_EMERGENCY_PDN_FOR_EMERGENCY_SUPL = newEP4ES; } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SUPL_EM_SERVICES_BIT) { uint32_t newSuplEs = mAdapter.convertSuplEs( gnssConfigRequested.suplEmergencyServices); if (newSuplEs != ContextBase::mGps_conf.SUPL_ES) { ContextBase::mGps_conf.SUPL_ES = newSuplEs; } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SUPL_MODE_BIT) { uint32_t newSuplMode = mAdapter.convertSuplMode(gnssConfigRequested.suplModeMask); ContextBase::mGps_conf.SUPL_MODE = newSuplMode; mAdapter.broadcastCapabilities(mAdapter.getCapabilities()); index++; } LocApiCollectiveResponse *configCollectiveResponse = new LocApiCollectiveResponse( *adapter.getContext(), [&adapter, sessionIds, countOfConfigs] (std::vector errs) { std::vector ids(sessionIds); adapter.reportResponse(countOfConfigs, errs.data(), ids.data()); }); mApi.sendMsg(new LocApiMsg( [&adapter, gnssConfigRequested, gnssConfigNeedEngineUpdate, countOfConfigs, configCollectiveResponse, errs] () { std::vector errsList = adapter.gnssUpdateConfig("", gnssConfigRequested, gnssConfigNeedEngineUpdate, countOfConfigs); configCollectiveResponse->returnToSender(errsList); })); } }; if (NULL != ids) { sendMsg(new MsgGnssUpdateConfig(*this, *mLocApi, config, ids, count)); } else { LOC_LOGE("%s]: No GNSS config items to update", __func__); } return ids; } void GnssAdapter::gnssSvIdConfigUpdate(const std::vector& blacklistedSvIds) { // Clear the existing config memset(&mGnssSvIdConfig, 0, sizeof(GnssSvIdConfig)); // Convert the sv id lists to masks bool convertSuccess = convertToGnssSvIdConfig(blacklistedSvIds, mGnssSvIdConfig); // Now send to Modem if conversion successful if (convertSuccess) { gnssSvIdConfigUpdate(); } else { LOC_LOGe("convertToGnssSvIdConfig failed"); } } void GnssAdapter::gnssSvIdConfigUpdate() { LOC_LOGd("blacklist bds 0x%" PRIx64 ", glo 0x%" PRIx64 ", qzss 0x%" PRIx64 ", gal 0x%" PRIx64, mGnssSvIdConfig.bdsBlacklistSvMask, mGnssSvIdConfig.gloBlacklistSvMask, mGnssSvIdConfig.qzssBlacklistSvMask, mGnssSvIdConfig.galBlacklistSvMask); // Now set required blacklisted SVs mLocApi->setBlacklistSv(mGnssSvIdConfig); } LocationError GnssAdapter::gnssSvIdConfigUpdateSync(const std::vector& blacklistedSvIds) { // Clear the existing config memset(&mGnssSvIdConfig, 0, sizeof(GnssSvIdConfig)); // Convert the sv id lists to masks convertToGnssSvIdConfig(blacklistedSvIds, mGnssSvIdConfig); // Now send to Modem return gnssSvIdConfigUpdateSync(); } LocationError GnssAdapter::gnssSvIdConfigUpdateSync() { LOC_LOGd("blacklist bds 0x%" PRIx64 ", glo 0x%" PRIx64 ", qzss 0x%" PRIx64 ", gal 0x%" PRIx64, mGnssSvIdConfig.bdsBlacklistSvMask, mGnssSvIdConfig.gloBlacklistSvMask, mGnssSvIdConfig.qzssBlacklistSvMask, mGnssSvIdConfig.galBlacklistSvMask); // Now set required blacklisted SVs return mLocApi->setBlacklistSvSync(mGnssSvIdConfig); } uint32_t* GnssAdapter::gnssGetConfigCommand(GnssConfigFlagsMask configMask) { // count the number of bits set GnssConfigFlagsMask flagsCopy = configMask; size_t count = 0; while (flagsCopy > 0) { if (flagsCopy & 1) { count++; } flagsCopy >>= 1; } std::string idsString = "["; uint32_t* ids = NULL; if (count > 0) { ids = new uint32_t[count]; if (nullptr == ids) { LOC_LOGe("new allocation failed, fatal error."); return nullptr; } for (size_t i=0; i < count; ++i) { ids[i] = generateSessionId(); IF_LOC_LOGD { idsString += std::to_string(ids[i]) + " "; } } } idsString += "]"; LOC_LOGd("ids %s flags 0x%X", idsString.c_str(), configMask); struct MsgGnssGetConfig : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; GnssConfigFlagsMask mConfigMask; uint32_t* mIds; size_t mCount; inline MsgGnssGetConfig(GnssAdapter& adapter, LocApiBase& api, GnssConfigFlagsMask configMask, uint32_t* ids, size_t count) : LocMsg(), mAdapter(adapter), mApi(api), mConfigMask(configMask), mIds(ids), mCount(count) {} inline MsgGnssGetConfig(const MsgGnssGetConfig& obj) : MsgGnssGetConfig(obj.mAdapter, obj.mApi, obj.mConfigMask, new uint32_t[obj.mCount], obj.mCount) { if (mIds != nullptr) { for (int i = 0; i < mCount; ++i) { mIds[i] = obj.mIds[i]; } } } inline virtual ~MsgGnssGetConfig() { delete[] mIds; } inline virtual void proc() const { if (!mAdapter.isEngineCapabilitiesKnown()) { mAdapter.mPendingMsgs.push_back(new MsgGnssGetConfig(*this)); return; } LocationError* errs = new LocationError[mCount]; LocationError err = LOCATION_ERROR_SUCCESS; uint32_t index = 0; if (nullptr == errs) { LOC_LOGE("%s] new allocation failed, fatal error.", __func__); return; } if (mConfigMask & GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_EM_PDN_FOR_EM_SUPL_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_SUPL_EM_SERVICES_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_SUPL_MODE_BIT) { err = LOCATION_ERROR_NOT_SUPPORTED; if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT) { // Check if feature is supported if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature not supported."); err = LOCATION_ERROR_NOT_SUPPORTED; } else { // Send request to Modem to fetch the config mApi.getBlacklistSv(); err = LOCATION_ERROR_SUCCESS; } if (index < mCount) { errs[index++] = err; } } if (mConfigMask & GNSS_CONFIG_FLAGS_EMERGENCY_EXTENSION_SECONDS_BIT) { err = LOCATION_ERROR_NOT_SUPPORTED; if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } mAdapter.reportResponse(index, errs, mIds); delete[] errs; } }; if (NULL != ids) { sendMsg(new MsgGnssGetConfig(*this, *mLocApi, configMask, ids, count)); } else { LOC_LOGe("No GNSS config items to Get"); } return ids; } bool GnssAdapter::convertToGnssSvIdConfig( const std::vector& blacklistedSvIds, GnssSvIdConfig& config) { bool retVal = false; config.size = sizeof(GnssSvIdConfig); // Empty vector => Clear any previous blacklisted SVs if (0 == blacklistedSvIds.size()) { config.gloBlacklistSvMask = 0; config.bdsBlacklistSvMask = 0; config.qzssBlacklistSvMask = 0; config.galBlacklistSvMask = 0; retVal = true; } else { // Parse the vector and convert SV IDs to mask values for (GnssSvIdSource source : blacklistedSvIds) { uint64_t* svMaskPtr = NULL; GnssSvId initialSvId = 0; switch(source.constellation) { case GNSS_SV_TYPE_GLONASS: svMaskPtr = &config.gloBlacklistSvMask; initialSvId = GNSS_SV_CONFIG_GLO_INITIAL_SV_ID; break; case GNSS_SV_TYPE_BEIDOU: svMaskPtr = &config.bdsBlacklistSvMask; initialSvId = GNSS_SV_CONFIG_BDS_INITIAL_SV_ID; break; case GNSS_SV_TYPE_QZSS: svMaskPtr = &config.qzssBlacklistSvMask; initialSvId = GNSS_SV_CONFIG_QZSS_INITIAL_SV_ID; break; case GNSS_SV_TYPE_GALILEO: svMaskPtr = &config.galBlacklistSvMask; initialSvId = GNSS_SV_CONFIG_GAL_INITIAL_SV_ID; break; default: break; } if (NULL == svMaskPtr) { LOC_LOGe("Invalid constellation %d", source.constellation); } else { // SV ID 0 = All SV IDs if (0 == source.svId) { *svMaskPtr = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } else if (source.svId < initialSvId || source.svId >= initialSvId + 64) { LOC_LOGe("Invalid sv id %d for sv type %d", source.svId, source.constellation); } else { *svMaskPtr |= (1 << (source.svId - initialSvId)); } } } // Return true if any one source is valid if (0 != config.gloBlacklistSvMask || 0 != config.bdsBlacklistSvMask || 0 != config.galBlacklistSvMask || 0 != config.qzssBlacklistSvMask) { retVal = true; } } return retVal; } void GnssAdapter::convertFromGnssSvIdConfig( const GnssSvIdConfig& svConfig, GnssConfig& config) { // Convert blacklisted SV mask values to vectors if (svConfig.bdsBlacklistSvMask) { convertGnssSvIdMaskToList( svConfig.bdsBlacklistSvMask, config.blacklistedSvIds, GNSS_SV_CONFIG_BDS_INITIAL_SV_ID, GNSS_SV_TYPE_BEIDOU); config.flags |= GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT; } if (svConfig.galBlacklistSvMask) { convertGnssSvIdMaskToList( svConfig.galBlacklistSvMask, config.blacklistedSvIds, GNSS_SV_CONFIG_GAL_INITIAL_SV_ID, GNSS_SV_TYPE_GALILEO); config.flags |= GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT; } if (svConfig.gloBlacklistSvMask) { convertGnssSvIdMaskToList( svConfig.gloBlacklistSvMask, config.blacklistedSvIds, GNSS_SV_CONFIG_GLO_INITIAL_SV_ID, GNSS_SV_TYPE_GLONASS); config.flags |= GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT; } if (svConfig.qzssBlacklistSvMask) { convertGnssSvIdMaskToList( svConfig.qzssBlacklistSvMask, config.blacklistedSvIds, GNSS_SV_CONFIG_QZSS_INITIAL_SV_ID, GNSS_SV_TYPE_QZSS); config.flags |= GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT; } } void GnssAdapter::convertGnssSvIdMaskToList( uint64_t svIdMask, std::vector& svIds, GnssSvId initialSvId, GnssSvType svType) { GnssSvIdSource source = {}; source.size = sizeof(GnssSvIdSource); source.constellation = svType; // SV ID 0 => All SV IDs in mask if (GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK == svIdMask) { source.svId = 0; svIds.push_back(source); return; } // Convert each bit in svIdMask to vector entry uint32_t bitNumber = 0; while (svIdMask > 0) { if (svIdMask & 0x1) { source.svId = bitNumber + initialSvId; svIds.push_back(source); } bitNumber++; svIdMask >>= 1; } } void GnssAdapter::reportGnssSvIdConfigEvent(const GnssSvIdConfig& config) { struct MsgReportGnssSvIdConfig : public LocMsg { GnssAdapter& mAdapter; const GnssSvIdConfig mConfig; inline MsgReportGnssSvIdConfig(GnssAdapter& adapter, const GnssSvIdConfig& config) : LocMsg(), mAdapter(adapter), mConfig(config) {} inline virtual void proc() const { mAdapter.reportGnssSvIdConfig(mConfig); } }; sendMsg(new MsgReportGnssSvIdConfig(*this, config)); } void GnssAdapter::reportGnssSvIdConfig(const GnssSvIdConfig& svIdConfig) { GnssConfig config = {}; config.size = sizeof(GnssConfig); // Invoke control clients config callback if (nullptr != mControlCallbacks.gnssConfigCb && svIdConfig.size == sizeof(GnssSvIdConfig)) { convertFromGnssSvIdConfig(svIdConfig, config); LOC_LOGd("blacklist bds 0x%" PRIx64 ", glo 0x%" PRIx64 ", qzss 0x%" PRIx64 ", gal 0x%" PRIx64, svIdConfig.bdsBlacklistSvMask, svIdConfig.gloBlacklistSvMask, svIdConfig.qzssBlacklistSvMask, svIdConfig.galBlacklistSvMask); mControlCallbacks.gnssConfigCb(config); } else { LOC_LOGe("Failed to report, size %d", (uint32_t)config.size); } } void GnssAdapter::gnssUpdateSvTypeConfigCommand(GnssSvTypeConfig config) { struct MsgGnssUpdateSvTypeConfig : public LocMsg { GnssAdapter* mAdapter; LocApiBase* mApi; GnssSvTypeConfig mConfig; inline MsgGnssUpdateSvTypeConfig( GnssAdapter* adapter, LocApiBase* api, GnssSvTypeConfig& config) : LocMsg(), mAdapter(adapter), mApi(api), mConfig(config) {} inline virtual void proc() const { if (!mAdapter->isEngineCapabilitiesKnown()) { mAdapter->mPendingMsgs.push_back(new MsgGnssUpdateSvTypeConfig(*this)); return; } // Check if feature is supported if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature not supported."); } else { // Send update request to modem mAdapter->gnssSvTypeConfigUpdate(mConfig); } } }; sendMsg(new MsgGnssUpdateSvTypeConfig(this, mLocApi, config)); } void GnssAdapter::gnssSvTypeConfigUpdate(const GnssSvTypeConfig& config) { // Gather bits removed from enabled mask GnssSvTypesMask enabledRemoved = mGnssSvTypeConfig.enabledSvTypesMask & (mGnssSvTypeConfig.enabledSvTypesMask ^ config.enabledSvTypesMask); // Send reset if any constellation is removed from the enabled list bool sendReset = (enabledRemoved != 0); // Save new config and update gnssSetSvTypeConfig(config); gnssSvTypeConfigUpdate(sendReset); } void GnssAdapter::gnssSvTypeConfigUpdate(bool sendReset) { LOC_LOGd("size %" PRIu32" constellations blacklisted 0x%" PRIx64 ", enabled 0x%" PRIx64 ", sendReset %d", mGnssSvTypeConfig.size, mGnssSvTypeConfig.blacklistedSvTypesMask, mGnssSvTypeConfig.enabledSvTypesMask, sendReset); if (mGnssSvTypeConfig.size == sizeof(mGnssSvTypeConfig)) { if (sendReset) { mLocApi->resetConstellationControl(); } GnssSvIdConfig blacklistConfig = {}; // Revert to previously blacklisted SVs for each enabled constellation blacklistConfig = mGnssSvIdConfig; // Blacklist all SVs for each disabled constellation if (mGnssSvTypeConfig.blacklistedSvTypesMask) { if (mGnssSvTypeConfig.blacklistedSvTypesMask & GNSS_SV_TYPES_MASK_GLO_BIT) { blacklistConfig.gloBlacklistSvMask = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } if (mGnssSvTypeConfig.blacklistedSvTypesMask & GNSS_SV_TYPES_MASK_BDS_BIT) { blacklistConfig.bdsBlacklistSvMask = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } if (mGnssSvTypeConfig.blacklistedSvTypesMask & GNSS_SV_TYPES_MASK_QZSS_BIT) { blacklistConfig.qzssBlacklistSvMask = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } if (mGnssSvTypeConfig.blacklistedSvTypesMask & GNSS_SV_TYPES_MASK_GAL_BIT) { blacklistConfig.galBlacklistSvMask = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } } // Send blacklist info mLocApi->setBlacklistSv(blacklistConfig); // Send only enabled constellation config if (mGnssSvTypeConfig.enabledSvTypesMask) { GnssSvTypeConfig svTypeConfig = {sizeof(GnssSvTypeConfig), 0, 0}; svTypeConfig.enabledSvTypesMask = mGnssSvTypeConfig.enabledSvTypesMask; mLocApi->setConstellationControl(svTypeConfig); } } } void GnssAdapter::gnssGetSvTypeConfigCommand(GnssSvTypeConfigCallback callback) { struct MsgGnssGetSvTypeConfig : public LocMsg { GnssAdapter* mAdapter; LocApiBase* mApi; GnssSvTypeConfigCallback mCallback; inline MsgGnssGetSvTypeConfig( GnssAdapter* adapter, LocApiBase* api, GnssSvTypeConfigCallback callback) : LocMsg(), mAdapter(adapter), mApi(api), mCallback(callback) {} inline virtual void proc() const { if (!mAdapter->isEngineCapabilitiesKnown()) { mAdapter->mPendingMsgs.push_back(new MsgGnssGetSvTypeConfig(*this)); return; } if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature not supported."); } else { // Save the callback mAdapter->gnssSetSvTypeConfigCallback(mCallback); // Send GET request to modem mApi->getConstellationControl(); } } }; sendMsg(new MsgGnssGetSvTypeConfig(this, mLocApi, callback)); } void GnssAdapter::gnssResetSvTypeConfigCommand() { struct MsgGnssResetSvTypeConfig : public LocMsg { GnssAdapter* mAdapter; LocApiBase* mApi; inline MsgGnssResetSvTypeConfig( GnssAdapter* adapter, LocApiBase* api) : LocMsg(), mAdapter(adapter), mApi(api) {} inline virtual void proc() const { if (!mAdapter->isEngineCapabilitiesKnown()) { mAdapter->mPendingMsgs.push_back(new MsgGnssResetSvTypeConfig(*this)); return; } if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature not supported."); } else { // Reset constellation config mAdapter->gnssSetSvTypeConfig({sizeof(GnssSvTypeConfig), 0, 0}); // Re-enforce SV blacklist config mAdapter->gnssSvIdConfigUpdate(); // Send reset request to modem mApi->resetConstellationControl(); } } }; sendMsg(new MsgGnssResetSvTypeConfig(this, mLocApi)); } void GnssAdapter::reportGnssSvTypeConfigEvent(const GnssSvTypeConfig& config) { struct MsgReportGnssSvTypeConfig : public LocMsg { GnssAdapter& mAdapter; const GnssSvTypeConfig mConfig; inline MsgReportGnssSvTypeConfig(GnssAdapter& adapter, const GnssSvTypeConfig& config) : LocMsg(), mAdapter(adapter), mConfig(config) {} inline virtual void proc() const { mAdapter.reportGnssSvTypeConfig(mConfig); } }; sendMsg(new MsgReportGnssSvTypeConfig(*this, config)); } void GnssAdapter::reportGnssSvTypeConfig(const GnssSvTypeConfig& config) { // Invoke Get SV Type Callback if (NULL != mGnssSvTypeConfigCb && config.size == sizeof(GnssSvTypeConfig)) { LOC_LOGd("constellations blacklisted 0x%" PRIx64 ", enabled 0x%" PRIx64, config.blacklistedSvTypesMask, config.enabledSvTypesMask); mGnssSvTypeConfigCb(config); } else { LOC_LOGe("Failed to report, size %d", (uint32_t)config.size); } } void GnssAdapter::deleteAidingData(const GnssAidingData &data, uint32_t sessionId) { mLocApi->deleteAidingData(data, new LocApiResponse(*getContext(), [this, sessionId] (LocationError err) { reportResponse(err, sessionId); })); } uint32_t GnssAdapter::gnssDeleteAidingDataCommand(GnssAidingData& data) { uint32_t sessionId = generateSessionId(); LOC_LOGD("%s]: id %u", __func__, sessionId); struct MsgDeleteAidingData : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; GnssAidingData mData; inline MsgDeleteAidingData(GnssAdapter& adapter, uint32_t sessionId, GnssAidingData& data) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mData(data) {} inline virtual void proc() const { if ((mData.posEngineMask & STANDARD_POSITIONING_ENGINE) != 0) { mAdapter.deleteAidingData(mData, mSessionId); SystemStatus* s = mAdapter.getSystemStatus(); if ((nullptr != s) && (mData.deleteAll)) { s->setDefaultGnssEngineStates(); } } mAdapter.mEngHubProxy->gnssDeleteAidingData(mData); } }; sendMsg(new MsgDeleteAidingData(*this, sessionId, data)); return sessionId; } void GnssAdapter::gnssUpdateXtraThrottleCommand(const bool enabled) { LOC_LOGD("%s] enabled:%d", __func__, enabled); struct UpdateXtraThrottleMsg : public LocMsg { GnssAdapter& mAdapter; const bool mEnabled; inline UpdateXtraThrottleMsg(GnssAdapter& adapter, const bool enabled) : LocMsg(), mAdapter(adapter), mEnabled(enabled) {} inline virtual void proc() const { mAdapter.mXtraObserver.updateXtraThrottle(mEnabled); } }; sendMsg(new UpdateXtraThrottleMsg(*this, enabled)); } void GnssAdapter::injectLocationCommand(double latitude, double longitude, float accuracy) { LOC_LOGD("%s]: latitude %8.4f longitude %8.4f accuracy %8.4f", __func__, latitude, longitude, accuracy); struct MsgInjectLocation : public LocMsg { LocApiBase& mApi; ContextBase& mContext; BlockCPIInfo& mBlockCPI; double mLatitude; double mLongitude; float mAccuracy; inline MsgInjectLocation(LocApiBase& api, ContextBase& context, BlockCPIInfo& blockCPIInfo, double latitude, double longitude, float accuracy) : LocMsg(), mApi(api), mContext(context), mBlockCPI(blockCPIInfo), mLatitude(latitude), mLongitude(longitude), mAccuracy(accuracy) {} inline virtual void proc() const { if ((uptimeMillis() <= mBlockCPI.blockedTillTsMs) && (fabs(mLatitude-mBlockCPI.latitude) <= mBlockCPI.latLonDiffThreshold) && (fabs(mLongitude-mBlockCPI.longitude) <= mBlockCPI.latLonDiffThreshold)) { LOC_LOGD("%s]: positon injeciton blocked: lat: %f, lon: %f, accuracy: %f", __func__, mLatitude, mLongitude, mAccuracy); } else { mApi.injectPosition(mLatitude, mLongitude, mAccuracy); } } }; sendMsg(new MsgInjectLocation(*mLocApi, *mContext, mBlockCPIInfo, latitude, longitude, accuracy)); } void GnssAdapter::injectLocationExtCommand(const GnssLocationInfoNotification &locationInfo) { LOC_LOGd("latitude %8.4f longitude %8.4f accuracy %8.4f, tech mask 0x%x", locationInfo.location.latitude, locationInfo.location.longitude, locationInfo.location.accuracy, locationInfo.location.techMask); struct MsgInjectLocationExt : public LocMsg { LocApiBase& mApi; ContextBase& mContext; GnssLocationInfoNotification mLocationInfo; inline MsgInjectLocationExt(LocApiBase& api, ContextBase& context, GnssLocationInfoNotification locationInfo) : LocMsg(), mApi(api), mContext(context), mLocationInfo(locationInfo) {} inline virtual void proc() const { // false to indicate for none-ODCPI mApi.injectPosition(mLocationInfo, false); } }; sendMsg(new MsgInjectLocationExt(*mLocApi, *mContext, locationInfo)); } void GnssAdapter::injectTimeCommand(int64_t time, int64_t timeReference, int32_t uncertainty) { LOC_LOGD("%s]: time %lld timeReference %lld uncertainty %d", __func__, (long long)time, (long long)timeReference, uncertainty); struct MsgInjectTime : public LocMsg { LocApiBase& mApi; ContextBase& mContext; int64_t mTime; int64_t mTimeReference; int32_t mUncertainty; inline MsgInjectTime(LocApiBase& api, ContextBase& context, int64_t time, int64_t timeReference, int32_t uncertainty) : LocMsg(), mApi(api), mContext(context), mTime(time), mTimeReference(timeReference), mUncertainty(uncertainty) {} inline virtual void proc() const { mApi.setTime(mTime, mTimeReference, mUncertainty); } }; sendMsg(new MsgInjectTime(*mLocApi, *mContext, time, timeReference, uncertainty)); } // This command is to called to block the position to be injected to the modem. // This can happen for network position that comes from modem. void GnssAdapter::blockCPICommand(double latitude, double longitude, float accuracy, int blockDurationMsec, double latLonDiffThreshold) { struct MsgBlockCPI : public LocMsg { BlockCPIInfo& mDstCPIInfo; BlockCPIInfo mSrcCPIInfo; inline MsgBlockCPI(BlockCPIInfo& dstCPIInfo, BlockCPIInfo& srcCPIInfo) : mDstCPIInfo(dstCPIInfo), mSrcCPIInfo(srcCPIInfo) {} inline virtual void proc() const { // in the same hal thread, save the cpi to be blocked // the global variable mDstCPIInfo = mSrcCPIInfo; } }; // construct the new block CPI info and queue on the same thread // for processing BlockCPIInfo blockCPIInfo; blockCPIInfo.latitude = latitude; blockCPIInfo.longitude = longitude; blockCPIInfo.accuracy = accuracy; blockCPIInfo.blockedTillTsMs = uptimeMillis() + blockDurationMsec; blockCPIInfo.latLonDiffThreshold = latLonDiffThreshold; LOC_LOGD("%s]: block CPI lat: %f, lon: %f ", __func__, latitude, longitude); // send a message to record down the coarse position // to be blocked from injection in the master copy (mBlockCPIInfo) sendMsg(new MsgBlockCPI(mBlockCPIInfo, blockCPIInfo)); } void GnssAdapter::addClientCommand(LocationAPI* client, const LocationCallbacks& callbacks) { LOC_LOGD("%s]: client %p", __func__, client); struct MsgAddClient : public LocMsg { GnssAdapter& mAdapter; LocationAPI* mClient; const LocationCallbacks mCallbacks; inline MsgAddClient(GnssAdapter& adapter, LocationAPI* client, const LocationCallbacks& callbacks) : LocMsg(), mAdapter(adapter), mClient(client), mCallbacks(callbacks) {} inline virtual void proc() const { // check whether we need to notify client of cached location system info mAdapter.notifyClientOfCachedLocationSystemInfo(mClient, mCallbacks); mAdapter.saveClient(mClient, mCallbacks); } }; sendMsg(new MsgAddClient(*this, client, callbacks)); } void GnssAdapter::stopClientSessions(LocationAPI* client) { LOC_LOGD("%s]: client %p", __func__, client); /* Time-based Tracking */ std::vector vTimeBasedTrackingClient; for (auto it : mTimeBasedTrackingSessions) { if (client == it.first.client) { vTimeBasedTrackingClient.emplace_back(it.first.client, it.first.id); } } for (auto key : vTimeBasedTrackingClient) { stopTimeBasedTrackingMultiplex(key.client, key.id); } /* Distance-based Tracking */ for (auto it = mDistanceBasedTrackingSessions.begin(); it != mDistanceBasedTrackingSessions.end(); /* no increment here*/) { if (client == it->first.client) { mLocApi->stopDistanceBasedTracking(it->first.id, new LocApiResponse(*getContext(), [this, client, id=it->first.id] (LocationError err) { if (LOCATION_ERROR_SUCCESS == err) { eraseTrackingSession(client, id); } } )); } ++it; // increment only when not erasing an iterator } } void GnssAdapter::updateClientsEventMask() { LOC_API_ADAPTER_EVENT_MASK_T mask = 0; for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (it->second.trackingCb != nullptr || it->second.gnssLocationInfoCb != nullptr) { mask |= LOC_API_ADAPTER_BIT_PARSED_POSITION_REPORT; } if (it->second.gnssSvCb != nullptr) { mask |= LOC_API_ADAPTER_BIT_SATELLITE_REPORT; } if ((it->second.gnssNmeaCb != nullptr) && (mNmeaMask)) { mask |= LOC_API_ADAPTER_BIT_NMEA_1HZ_REPORT; } if (it->second.gnssMeasurementsCb != nullptr) { mask |= LOC_API_ADAPTER_BIT_GNSS_MEASUREMENT; } if (it->second.gnssDataCb != nullptr) { mask |= LOC_API_ADAPTER_BIT_PARSED_POSITION_REPORT; mask |= LOC_API_ADAPTER_BIT_NMEA_1HZ_REPORT; updateNmeaMask(mNmeaMask | LOC_NMEA_MASK_DEBUG_V02); } } /* ** For Automotive use cases we need to enable MEASUREMENT, POLY and EPHEMERIS ** when QDR is enabled (e.g.: either enabled via conf file or ** engine hub is loaded successfully). ** Note: this need to be called from msg queue thread. */ if((1 == ContextBase::mGps_conf.EXTERNAL_DR_ENABLED) || (true == initEngHubProxy())) { mask |= LOC_API_ADAPTER_BIT_GNSS_MEASUREMENT; mask |= LOC_API_ADAPTER_BIT_GNSS_NHZ_MEASUREMENT; mask |= LOC_API_ADAPTER_BIT_GNSS_SV_POLYNOMIAL_REPORT; mask |= LOC_API_ADAPTER_BIT_PARSED_UNPROPAGATED_POSITION_REPORT; mask |= LOC_API_ADAPTER_BIT_GNSS_SV_EPHEMERIS_REPORT; mask |= LOC_API_ADAPTER_BIT_LOC_SYSTEM_INFO; mask |= LOC_API_ADAPTER_BIT_EVENT_REPORT_INFO; LOC_LOGd("Auto usecase, Enable MEAS/POLY/EPHEMERIS - mask 0x%" PRIx64 "", mask); } if (mAgpsManager.isRegistered()) { mask |= LOC_API_ADAPTER_BIT_LOCATION_SERVER_REQUEST; } // Add ODCPI handling if (nullptr != mOdcpiRequestCb) { mask |= LOC_API_ADAPTER_BIT_REQUEST_WIFI; } // need to register for leap second info // for proper nmea generation mask |= LOC_API_ADAPTER_BIT_LOC_SYSTEM_INFO; // always register for NI NOTIFY VERIFY to handle internally in HAL mask |= LOC_API_ADAPTER_BIT_NI_NOTIFY_VERIFY_REQUEST; updateEvtMask(mask, LOC_REGISTRATION_MASK_SET); } void GnssAdapter::handleEngineUpEvent() { LOC_LOGD("%s]: ", __func__); struct MsgHandleEngineUpEvent : public LocMsg { GnssAdapter& mAdapter; inline MsgHandleEngineUpEvent(GnssAdapter& adapter) : LocMsg(), mAdapter(adapter) {} virtual void proc() const { mAdapter.setEngineCapabilitiesKnown(true); mAdapter.broadcastCapabilities(mAdapter.getCapabilities()); // must be called only after capabilities are known mAdapter.setConfig(); mAdapter.restartSessions(); mAdapter.gnssSvIdConfigUpdate(); mAdapter.gnssSvTypeConfigUpdate(); for (auto msg: mAdapter.mPendingMsgs) { mAdapter.sendMsg(msg); } mAdapter.mPendingMsgs.clear(); } }; readConfigCommand(); sendMsg(new MsgHandleEngineUpEvent(*this)); } void GnssAdapter::restartSessions() { LOC_LOGD("%s]: ", __func__); // odcpi session is no longer active after restart mOdcpiRequestActive = false; if (!mTimeBasedTrackingSessions.empty()) { // get the LocationOptions that has the smallest interval, which should be the active one TrackingOptions smallestIntervalOptions; // size is zero until set for the first time TrackingOptions highestPowerTrackingOptions; memset(&smallestIntervalOptions, 0, sizeof(smallestIntervalOptions)); memset(&highestPowerTrackingOptions, 0, sizeof(highestPowerTrackingOptions)); for (auto it = mTimeBasedTrackingSessions.begin(); it != mTimeBasedTrackingSessions.end(); ++it) { // size of zero means we havent set it yet if (0 == smallestIntervalOptions.size || it->second.minInterval < smallestIntervalOptions.minInterval) { smallestIntervalOptions = it->second; } GnssPowerMode powerMode = it->second.powerMode; // Size of zero means we havent set it yet if (0 == highestPowerTrackingOptions.size || (GNSS_POWER_MODE_INVALID != powerMode && powerMode < highestPowerTrackingOptions.powerMode)) { highestPowerTrackingOptions = it->second; } } highestPowerTrackingOptions.setLocationOptions(smallestIntervalOptions); mLocApi->startTimeBasedTracking(highestPowerTrackingOptions, nullptr); } for (auto it = mDistanceBasedTrackingSessions.begin(); it != mDistanceBasedTrackingSessions.end(); ++it) { mLocApi->startDistanceBasedTracking(it->first.id, it->second, new LocApiResponse(*getContext(), [] (LocationError /*err*/) {})); } } void GnssAdapter::notifyClientOfCachedLocationSystemInfo( LocationAPI* client, const LocationCallbacks& callbacks) { if (mLocSystemInfo.systemInfoMask) { // client need to be notified if client has not yet previously registered // for the info but now register for it. bool notifyClientOfSystemInfo = false; // check whether we need to notify client of cached location system info // // client need to be notified if client has not yet previously registered // for the info but now register for it. if (callbacks.locationSystemInfoCb) { notifyClientOfSystemInfo = true; auto it = mClientData.find(client); if (it != mClientData.end()) { LocationCallbacks oldCallbacks = it->second; if (oldCallbacks.locationSystemInfoCb) { notifyClientOfSystemInfo = false; } } } if (notifyClientOfSystemInfo) { callbacks.locationSystemInfoCb(mLocSystemInfo); } } } bool GnssAdapter::hasTrackingCallback(LocationAPI* client) { auto it = mClientData.find(client); return (it != mClientData.end() && (it->second.trackingCb || it->second.gnssLocationInfoCb)); } bool GnssAdapter::isTimeBasedTrackingSession(LocationAPI* client, uint32_t sessionId) { LocationSessionKey key(client, sessionId); return (mTimeBasedTrackingSessions.find(key) != mTimeBasedTrackingSessions.end()); } bool GnssAdapter::isDistanceBasedTrackingSession(LocationAPI* client, uint32_t sessionId) { LocationSessionKey key(client, sessionId); return (mDistanceBasedTrackingSessions.find(key) != mDistanceBasedTrackingSessions.end()); } bool GnssAdapter::hasMeasurementsCallback(LocationAPI* client) { auto it = mClientData.find(client); return (it != mClientData.end() && it->second.gnssMeasurementsCb); } bool GnssAdapter::isTrackingSession(LocationAPI* client, uint32_t sessionId) { LocationSessionKey key(client, sessionId); return (mTimeBasedTrackingSessions.find(key) != mTimeBasedTrackingSessions.end()); } void GnssAdapter::reportPowerStateIfChanged() { bool newPowerOn = !mTimeBasedTrackingSessions.empty() || !mDistanceBasedTrackingSessions.empty(); if (newPowerOn != mPowerOn) { mPowerOn = newPowerOn; if (mPowerStateCb != nullptr) { mPowerStateCb(mPowerOn); } } } void GnssAdapter::getPowerStateChangesCommand(void* powerStateCb) { LOC_LOGD("%s]: ", __func__); struct MsgReportLocation : public LocMsg { GnssAdapter& mAdapter; powerStateCallback mPowerStateCb; inline MsgReportLocation(GnssAdapter& adapter, powerStateCallback powerStateCb) : LocMsg(), mAdapter(adapter), mPowerStateCb(powerStateCb) {} inline virtual void proc() const { mAdapter.savePowerStateCallback(mPowerStateCb); mPowerStateCb(mAdapter.getPowerState()); } }; sendMsg(new MsgReportLocation(*this, (powerStateCallback)powerStateCb)); } void GnssAdapter::saveTrackingSession(LocationAPI* client, uint32_t sessionId, const TrackingOptions& options) { LocationSessionKey key(client, sessionId); if ((options.minDistance > 0) && ContextBase::isMessageSupported(LOC_API_ADAPTER_MESSAGE_DISTANCE_BASE_TRACKING)) { mDistanceBasedTrackingSessions[key] = options; } else { mTimeBasedTrackingSessions[key] = options; } reportPowerStateIfChanged(); } void GnssAdapter::eraseTrackingSession(LocationAPI* client, uint32_t sessionId) { LocationSessionKey key(client, sessionId); auto it = mTimeBasedTrackingSessions.find(key); if (it != mTimeBasedTrackingSessions.end()) { mTimeBasedTrackingSessions.erase(it); } else { auto itr = mDistanceBasedTrackingSessions.find(key); if (itr != mDistanceBasedTrackingSessions.end()) { mDistanceBasedTrackingSessions.erase(itr); } } reportPowerStateIfChanged(); } bool GnssAdapter::setLocPositionMode(const LocPosMode& mode) { if (!mLocPositionMode.equals(mode)) { mLocPositionMode = mode; return true; } else { return false; } } void GnssAdapter::reportResponse(LocationAPI* client, LocationError err, uint32_t sessionId) { LOC_LOGD("%s]: client %p id %u err %u", __func__, client, sessionId, err); auto it = mClientData.find(client); if (it != mClientData.end() && it->second.responseCb != nullptr) { it->second.responseCb(err, sessionId); } else { LOC_LOGW("%s]: client %p id %u not found in data", __func__, client, sessionId); } } void GnssAdapter::reportResponse(LocationError err, uint32_t sessionId) { LOC_LOGD("%s]: id %u err %u", __func__, sessionId, err); if (mControlCallbacks.size > 0 && mControlCallbacks.responseCb != nullptr) { mControlCallbacks.responseCb(err, sessionId); } else { LOC_LOGW("%s]: control client response callback not found", __func__); } } void GnssAdapter::reportResponse(size_t count, LocationError* errs, uint32_t* ids) { IF_LOC_LOGD { std::string idsString = "["; std::string errsString = "["; if (NULL != ids && NULL != errs) { for (size_t i=0; i < count; ++i) { idsString += std::to_string(ids[i]) + " "; errsString += std::to_string(errs[i]) + " "; } } idsString += "]"; errsString += "]"; LOC_LOGD("%s]: ids %s errs %s", __func__, idsString.c_str(), errsString.c_str()); } if (mControlCallbacks.size > 0 && mControlCallbacks.collectiveResponseCb != nullptr) { mControlCallbacks.collectiveResponseCb(count, errs, ids); } else { LOC_LOGW("%s]: control client callback not found", __func__); } } uint32_t GnssAdapter::startTrackingCommand(LocationAPI* client, TrackingOptions& options) { uint32_t sessionId = generateSessionId(); LOC_LOGD("%s]: client %p id %u minInterval %u minDistance %u mode %u powermode %u tbm %u", __func__, client, sessionId, options.minInterval, options.minDistance, options.mode, options.powerMode, options.tbm); struct MsgStartTracking : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; LocationAPI* mClient; uint32_t mSessionId; mutable TrackingOptions mOptions; inline MsgStartTracking(GnssAdapter& adapter, LocApiBase& api, LocationAPI* client, uint32_t sessionId, TrackingOptions options) : LocMsg(), mAdapter(adapter), mApi(api), mClient(client), mSessionId(sessionId), mOptions(options) {} inline virtual void proc() const { // distance based tracking will need to know engine capabilities before it can start if (!mAdapter.isEngineCapabilitiesKnown() && mOptions.minDistance > 0) { mAdapter.mPendingMsgs.push_back(new MsgStartTracking(*this)); return; } LocationError err = LOCATION_ERROR_SUCCESS; if (!mAdapter.hasTrackingCallback(mClient) && !mAdapter.hasMeasurementsCallback(mClient)) { err = LOCATION_ERROR_CALLBACK_MISSING; } else if (0 == mOptions.size) { err = LOCATION_ERROR_INVALID_PARAMETER; } else { if (mOptions.minInterval < MIN_TRACKING_INTERVAL) { mOptions.minInterval = MIN_TRACKING_INTERVAL; } if (mOptions.minDistance > 0 && ContextBase::isMessageSupported( LOC_API_ADAPTER_MESSAGE_DISTANCE_BASE_TRACKING)) { mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); mApi.startDistanceBasedTracking(mSessionId, mOptions, new LocApiResponse(*mAdapter.getContext(), [&mAdapter = mAdapter, mSessionId = mSessionId, mClient = mClient] (LocationError err) { if (LOCATION_ERROR_SUCCESS != err) { mAdapter.eraseTrackingSession(mClient, mSessionId); } mAdapter.reportResponse(mClient, err, mSessionId); })); } else { if (GNSS_POWER_MODE_M4 == mOptions.powerMode && mOptions.tbm > TRACKING_TBM_THRESHOLD_MILLIS) { LOC_LOGd("TBM (%d) > %d Falling back to M2 power mode", mOptions.tbm, TRACKING_TBM_THRESHOLD_MILLIS); mOptions.powerMode = GNSS_POWER_MODE_M2; } // Api doesn't support multiple clients for time based tracking, so mutiplex bool reportToClientWithNoWait = mAdapter.startTimeBasedTrackingMultiplex(mClient, mSessionId, mOptions); mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, LOCATION_ERROR_SUCCESS, mSessionId); } } } } }; sendMsg(new MsgStartTracking(*this, *mLocApi, client, sessionId, options)); return sessionId; } bool GnssAdapter::startTimeBasedTrackingMultiplex(LocationAPI* client, uint32_t sessionId, const TrackingOptions& options) { bool reportToClientWithNoWait = true; if (mTimeBasedTrackingSessions.empty()) { startTimeBasedTracking(client, sessionId, options); // need to wait for QMI callback reportToClientWithNoWait = false; } else { // find the smallest interval and powerMode TrackingOptions multiplexedOptions = {}; // size is 0 until set for the first time GnssPowerMode multiplexedPowerMode = GNSS_POWER_MODE_INVALID; memset(&multiplexedOptions, 0, sizeof(multiplexedOptions)); for (auto it = mTimeBasedTrackingSessions.begin(); it != mTimeBasedTrackingSessions.end(); ++it) { // if not set or there is a new smallest interval, then set the new interval if (0 == multiplexedOptions.size || it->second.minInterval < multiplexedOptions.minInterval) { multiplexedOptions = it->second; } // if session is not the one we are updating and either powerMode // is not set or there is a new smallest powerMode, then set the new powerMode if (GNSS_POWER_MODE_INVALID == multiplexedPowerMode || it->second.powerMode < multiplexedPowerMode) { multiplexedPowerMode = it->second.powerMode; } } bool updateOptions = false; // if session we are starting has smaller interval then next smallest if (options.minInterval < multiplexedOptions.minInterval) { multiplexedOptions.minInterval = options.minInterval; updateOptions = true; } // if session we are starting has smaller powerMode then next smallest if (options.powerMode < multiplexedPowerMode) { multiplexedOptions.powerMode = options.powerMode; updateOptions = true; } if (updateOptions) { // restart time based tracking with the newly updated options startTimeBasedTracking(client, sessionId, multiplexedOptions); // need to wait for QMI callback reportToClientWithNoWait = false; } // else part: no QMI call is made, need to report back to client right away } return reportToClientWithNoWait; } void GnssAdapter::startTimeBasedTracking(LocationAPI* client, uint32_t sessionId, const TrackingOptions& trackingOptions) { LOC_LOGd("minInterval %u minDistance %u mode %u powermode %u tbm %u", trackingOptions.minInterval, trackingOptions.minDistance, trackingOptions.mode, trackingOptions.powerMode, trackingOptions.tbm); LocPosMode locPosMode = {}; convertOptions(locPosMode, trackingOptions); // inform engine hub that GNSS session is about to start mEngHubProxy->gnssSetFixMode(locPosMode); mEngHubProxy->gnssStartFix(); mLocApi->startTimeBasedTracking(trackingOptions, new LocApiResponse(*getContext(), [this, client, sessionId] (LocationError err) { if (LOCATION_ERROR_SUCCESS != err) { eraseTrackingSession(client, sessionId); } reportResponse(client, err, sessionId); } )); } void GnssAdapter::updateTracking(LocationAPI* client, uint32_t sessionId, const TrackingOptions& updatedOptions, const TrackingOptions& oldOptions) { LocPosMode locPosMode = {}; convertOptions(locPosMode, updatedOptions); // inform engine hub that GNSS session is about to start mEngHubProxy->gnssSetFixMode(locPosMode); mEngHubProxy->gnssStartFix(); mLocApi->startTimeBasedTracking(updatedOptions, new LocApiResponse(*getContext(), [this, client, sessionId, oldOptions] (LocationError err) { if (LOCATION_ERROR_SUCCESS != err) { // restore the old LocationOptions saveTrackingSession(client, sessionId, oldOptions); } reportResponse(client, err, sessionId); } )); } void GnssAdapter::updateTrackingOptionsCommand(LocationAPI* client, uint32_t id, TrackingOptions& options) { LOC_LOGD("%s]: client %p id %u minInterval %u mode %u", __func__, client, id, options.minInterval, options.mode); struct MsgUpdateTracking : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; LocationAPI* mClient; uint32_t mSessionId; mutable TrackingOptions mOptions; inline MsgUpdateTracking(GnssAdapter& adapter, LocApiBase& api, LocationAPI* client, uint32_t sessionId, TrackingOptions options) : LocMsg(), mAdapter(adapter), mApi(api), mClient(client), mSessionId(sessionId), mOptions(options) {} inline virtual void proc() const { // distance based tracking will need to know engine capabilities before it can start if (!mAdapter.isEngineCapabilitiesKnown() && mOptions.minDistance > 0) { mAdapter.mPendingMsgs.push_back(new MsgUpdateTracking(*this)); return; } LocationError err = LOCATION_ERROR_SUCCESS; bool isTimeBased = mAdapter.isTimeBasedTrackingSession(mClient, mSessionId); bool isDistanceBased = mAdapter.isDistanceBasedTrackingSession(mClient, mSessionId); if (!isTimeBased && !isDistanceBased) { err = LOCATION_ERROR_ID_UNKNOWN; } else if (0 == mOptions.size) { err = LOCATION_ERROR_INVALID_PARAMETER; } if (LOCATION_ERROR_SUCCESS != err) { mAdapter.reportResponse(mClient, err, mSessionId); } else { if (GNSS_POWER_MODE_M4 == mOptions.powerMode && mOptions.tbm > TRACKING_TBM_THRESHOLD_MILLIS) { LOC_LOGd("TBM (%d) > %d Falling back to M2 power mode", mOptions.tbm, TRACKING_TBM_THRESHOLD_MILLIS); mOptions.powerMode = GNSS_POWER_MODE_M2; } if (mOptions.minInterval < MIN_TRACKING_INTERVAL) { mOptions.minInterval = MIN_TRACKING_INTERVAL; } // Now update session as required if (isTimeBased && mOptions.minDistance > 0) { // switch from time based to distance based // Api doesn't support multiple clients for time based tracking, so mutiplex bool reportToClientWithNoWait = mAdapter.stopTimeBasedTrackingMultiplex(mClient, mSessionId); // erases the time based Session mAdapter.eraseTrackingSession(mClient, mSessionId); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, LOCATION_ERROR_SUCCESS, mSessionId); } // saves as distance based Session mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); mApi.startDistanceBasedTracking(mSessionId, mOptions, new LocApiResponse(*mAdapter.getContext(), [] (LocationError /*err*/) {})); } else if (isDistanceBased && mOptions.minDistance == 0) { // switch from distance based to time based mAdapter.eraseTrackingSession(mClient, mSessionId); mApi.stopDistanceBasedTracking(mSessionId, new LocApiResponse( *mAdapter.getContext(), [&mAdapter = mAdapter, mSessionId = mSessionId, mOptions = mOptions, mClient = mClient] (LocationError /*err*/) { // Api doesn't support multiple clients for time based tracking, // so mutiplex bool reportToClientWithNoWait = mAdapter.startTimeBasedTrackingMultiplex(mClient, mSessionId, mOptions); mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, LOCATION_ERROR_SUCCESS, mSessionId); } })); } else if (isTimeBased) { // update time based tracking // Api doesn't support multiple clients for time based tracking, so mutiplex bool reportToClientWithNoWait = mAdapter.updateTrackingMultiplex(mClient, mSessionId, mOptions); mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, err, mSessionId); } } else if (isDistanceBased) { // restart distance based tracking mApi.stopDistanceBasedTracking(mSessionId, new LocApiResponse( *mAdapter.getContext(), [&mAdapter = mAdapter, mSessionId = mSessionId, mOptions = mOptions, mClient = mClient, &mApi = mApi] (LocationError err) { if (LOCATION_ERROR_SUCCESS == err) { mApi.startDistanceBasedTracking(mSessionId, mOptions, new LocApiResponse(*mAdapter.getContext(), [&mAdapter, mClient, mSessionId, mOptions] (LocationError err) { if (LOCATION_ERROR_SUCCESS == err) { mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); } mAdapter.reportResponse(mClient, err, mSessionId); })); } })); } } } }; sendMsg(new MsgUpdateTracking(*this, *mLocApi, client, id, options)); } bool GnssAdapter::updateTrackingMultiplex(LocationAPI* client, uint32_t id, const TrackingOptions& trackingOptions) { bool reportToClientWithNoWait = true; LocationSessionKey key(client, id); // get the session we are updating auto it = mTimeBasedTrackingSessions.find(key); // cache the clients existing LocationOptions TrackingOptions oldOptions = it->second; // if session we are updating exists and the minInterval or powerMode has changed if (it != mTimeBasedTrackingSessions.end() && (it->second.minInterval != trackingOptions.minInterval || it->second.powerMode != trackingOptions.powerMode)) { // find the smallest interval and powerMode, other than the session we are updating TrackingOptions multiplexedOptions = {}; // size is 0 until set for the first time GnssPowerMode multiplexedPowerMode = GNSS_POWER_MODE_INVALID; memset(&multiplexedOptions, 0, sizeof(multiplexedOptions)); for (auto it2 = mTimeBasedTrackingSessions.begin(); it2 != mTimeBasedTrackingSessions.end(); ++it2) { // if session is not the one we are updating and either interval // is not set or there is a new smallest interval, then set the new interval if (it2->first != key && (0 == multiplexedOptions.size || it2->second.minInterval < multiplexedOptions.minInterval)) { multiplexedOptions = it2->second; } // if session is not the one we are updating and either powerMode // is not set or there is a new smallest powerMode, then set the new powerMode if (it2->first != key && (GNSS_POWER_MODE_INVALID == multiplexedPowerMode || it2->second.powerMode < multiplexedPowerMode)) { multiplexedPowerMode = it2->second.powerMode; } // else part: no QMI call is made, need to report back to client right away } bool updateOptions = false; // if session we are updating has smaller interval then next smallest if (trackingOptions.minInterval < multiplexedOptions.minInterval) { multiplexedOptions.minInterval = trackingOptions.minInterval; updateOptions = true; } // if session we are updating has smaller powerMode then next smallest if (trackingOptions.powerMode < multiplexedPowerMode) { multiplexedOptions.powerMode = trackingOptions.powerMode; updateOptions = true; } // if only one session exists, then tracking should be updated with it if (1 == mTimeBasedTrackingSessions.size()) { multiplexedOptions = trackingOptions; updateOptions = true; } if (updateOptions) { // restart time based tracking with the newly updated options updateTracking(client, id, multiplexedOptions, oldOptions); // need to wait for QMI callback reportToClientWithNoWait = false; } } return reportToClientWithNoWait; } void GnssAdapter::stopTrackingCommand(LocationAPI* client, uint32_t id) { LOC_LOGD("%s]: client %p id %u", __func__, client, id); struct MsgStopTracking : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; LocationAPI* mClient; uint32_t mSessionId; inline MsgStopTracking(GnssAdapter& adapter, LocApiBase& api, LocationAPI* client, uint32_t sessionId) : LocMsg(), mAdapter(adapter), mApi(api), mClient(client), mSessionId(sessionId) {} inline virtual void proc() const { bool isTimeBased = mAdapter.isTimeBasedTrackingSession(mClient, mSessionId); bool isDistanceBased = mAdapter.isDistanceBasedTrackingSession(mClient, mSessionId); if (isTimeBased || isDistanceBased) { if (isTimeBased) { // Api doesn't support multiple clients for time based tracking, so mutiplex bool reportToClientWithNoWait = mAdapter.stopTimeBasedTrackingMultiplex(mClient, mSessionId); mAdapter.eraseTrackingSession(mClient, mSessionId); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, LOCATION_ERROR_SUCCESS, mSessionId); } } else if (isDistanceBased) { mApi.stopDistanceBasedTracking(mSessionId, new LocApiResponse( *mAdapter.getContext(), [&mAdapter = mAdapter, mSessionId = mSessionId, mClient = mClient] (LocationError err) { if (LOCATION_ERROR_SUCCESS == err) { mAdapter.eraseTrackingSession(mClient, mSessionId); } mAdapter.reportResponse(mClient, err, mSessionId); })); } } else { mAdapter.reportResponse(mClient, LOCATION_ERROR_ID_UNKNOWN, mSessionId); } } }; sendMsg(new MsgStopTracking(*this, *mLocApi, client, id)); } bool GnssAdapter::stopTimeBasedTrackingMultiplex(LocationAPI* client, uint32_t id) { bool reportToClientWithNoWait = true; if (1 == mTimeBasedTrackingSessions.size()) { stopTracking(client, id); // need to wait for QMI callback reportToClientWithNoWait = false; } else { LocationSessionKey key(client, id); // get the session we are stopping auto it = mTimeBasedTrackingSessions.find(key); if (it != mTimeBasedTrackingSessions.end()) { // find the smallest interval and powerMode, other than the session we are stopping TrackingOptions multiplexedOptions = {}; // size is 0 until set for the first time GnssPowerMode multiplexedPowerMode = GNSS_POWER_MODE_INVALID; memset(&multiplexedOptions, 0, sizeof(multiplexedOptions)); for (auto it2 = mTimeBasedTrackingSessions.begin(); it2 != mTimeBasedTrackingSessions.end(); ++it2) { // if session is not the one we are stopping and either interval // is not set or there is a new smallest interval, then set the new interval if (it2->first != key && (0 == multiplexedOptions.size || it2->second.minInterval < multiplexedOptions.minInterval)) { multiplexedOptions = it2->second; } // if session is not the one we are stopping and either powerMode // is not set or there is a new smallest powerMode, then set the new powerMode if (it2->first != key && (GNSS_POWER_MODE_INVALID == multiplexedPowerMode || it2->second.powerMode < multiplexedPowerMode)) { multiplexedPowerMode = it2->second.powerMode; } } // if session we are stopping has smaller interval then next smallest or // if session we are stopping has smaller powerMode then next smallest if (it->second.minInterval < multiplexedOptions.minInterval || it->second.powerMode < multiplexedPowerMode) { multiplexedOptions.powerMode = multiplexedPowerMode; // restart time based tracking with the newly updated options startTimeBasedTracking(client, id, multiplexedOptions); // need to wait for QMI callback reportToClientWithNoWait = false; } // else part: no QMI call is made, need to report back to client right away } } return reportToClientWithNoWait; } void GnssAdapter::stopTracking(LocationAPI* client, uint32_t id) { // inform engine hub that GNSS session has stopped mEngHubProxy->gnssStopFix(); mLocApi->stopFix(new LocApiResponse(*getContext(), [this, client, id] (LocationError err) { reportResponse(client, err, id); })); } bool GnssAdapter::hasNiNotifyCallback(LocationAPI* client) { auto it = mClientData.find(client); return (it != mClientData.end() && it->second.gnssNiCb); } void GnssAdapter::gnssNiResponseCommand(LocationAPI* client, uint32_t id, GnssNiResponse response) { LOC_LOGD("%s]: client %p id %u response %u", __func__, client, id, response); struct MsgGnssNiResponse : public LocMsg { GnssAdapter& mAdapter; LocationAPI* mClient; uint32_t mSessionId; GnssNiResponse mResponse; inline MsgGnssNiResponse(GnssAdapter& adapter, LocationAPI* client, uint32_t sessionId, GnssNiResponse response) : LocMsg(), mAdapter(adapter), mClient(client), mSessionId(sessionId), mResponse(response) {} inline virtual void proc() const { NiData& niData = mAdapter.getNiData(); LocationError err = LOCATION_ERROR_SUCCESS; if (!mAdapter.hasNiNotifyCallback(mClient)) { err = LOCATION_ERROR_ID_UNKNOWN; } else { NiSession* pSession = NULL; if (mSessionId == niData.sessionEs.reqID && NULL != niData.sessionEs.rawRequest) { pSession = &niData.sessionEs; // ignore any SUPL NI non-Es session if a SUPL NI ES is accepted if (mResponse == GNSS_NI_RESPONSE_ACCEPT && NULL != niData.session.rawRequest) { pthread_mutex_lock(&niData.session.tLock); niData.session.resp = GNSS_NI_RESPONSE_IGNORE; niData.session.respRecvd = true; pthread_cond_signal(&niData.session.tCond); pthread_mutex_unlock(&niData.session.tLock); } } else if (mSessionId == niData.session.reqID && NULL != niData.session.rawRequest) { pSession = &niData.session; } if (pSession) { LOC_LOGI("%s]: gnssNiResponseCommand: send user mResponse %u for id %u", __func__, mResponse, mSessionId); pthread_mutex_lock(&pSession->tLock); pSession->resp = mResponse; pSession->respRecvd = true; pthread_cond_signal(&pSession->tCond); pthread_mutex_unlock(&pSession->tLock); } else { err = LOCATION_ERROR_ID_UNKNOWN; LOC_LOGE("%s]: gnssNiResponseCommand: id %u not an active session", __func__, mSessionId); } } mAdapter.reportResponse(mClient, err, mSessionId); } }; sendMsg(new MsgGnssNiResponse(*this, client, id, response)); } void GnssAdapter::gnssNiResponseCommand(GnssNiResponse response, void* rawRequest) { LOC_LOGD("%s]: response %u", __func__, response); struct MsgGnssNiResponse : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; const GnssNiResponse mResponse; const void* mPayload; inline MsgGnssNiResponse(GnssAdapter& adapter, LocApiBase& api, const GnssNiResponse response, const void* rawRequest) : LocMsg(), mAdapter(adapter), mApi(api), mResponse(response), mPayload(rawRequest) {} inline virtual ~MsgGnssNiResponse() { } inline virtual void proc() const { mApi.informNiResponse(mResponse, mPayload); } }; sendMsg(new MsgGnssNiResponse(*this, *mLocApi, response, rawRequest)); } uint32_t GnssAdapter::enableCommand(LocationTechnologyType techType) { uint32_t sessionId = generateSessionId(); LOC_LOGD("%s]: id %u techType %u", __func__, sessionId, techType); struct MsgEnableGnss : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; ContextBase& mContext; uint32_t mSessionId; LocationTechnologyType mTechType; inline MsgEnableGnss(GnssAdapter& adapter, LocApiBase& api, ContextBase& context, uint32_t sessionId, LocationTechnologyType techType) : LocMsg(), mAdapter(adapter), mApi(api), mContext(context), mSessionId(sessionId), mTechType(techType) {} inline virtual void proc() const { LocationError err = LOCATION_ERROR_SUCCESS; uint32_t afwControlId = mAdapter.getAfwControlId(); if (mTechType != LOCATION_TECHNOLOGY_TYPE_GNSS) { err = LOCATION_ERROR_INVALID_PARAMETER; } else if (afwControlId > 0) { err = LOCATION_ERROR_ALREADY_STARTED; } else { mContext.modemPowerVote(true); mAdapter.setAfwControlId(mSessionId); GnssConfigGpsLock gpsLock = GNSS_CONFIG_GPS_LOCK_NONE; if (mAdapter.mSupportNfwControl) { ContextBase::mGps_conf.GPS_LOCK &= GNSS_CONFIG_GPS_LOCK_NI; gpsLock = ContextBase::mGps_conf.GPS_LOCK; } mApi.sendMsg(new LocApiMsg([&mApi = mApi, gpsLock]() { mApi.setGpsLockSync(gpsLock); })); mAdapter.mXtraObserver.updateLockStatus(gpsLock); } mAdapter.reportResponse(err, mSessionId); } }; if (mContext != NULL) { sendMsg(new MsgEnableGnss(*this, *mLocApi, *mContext, sessionId, techType)); } else { LOC_LOGE("%s]: Context is NULL", __func__); } return sessionId; } void GnssAdapter::disableCommand(uint32_t id) { LOC_LOGD("%s]: id %u", __func__, id); struct MsgDisableGnss : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; ContextBase& mContext; uint32_t mSessionId; inline MsgDisableGnss(GnssAdapter& adapter, LocApiBase& api, ContextBase& context, uint32_t sessionId) : LocMsg(), mAdapter(adapter), mApi(api), mContext(context), mSessionId(sessionId) {} inline virtual void proc() const { LocationError err = LOCATION_ERROR_SUCCESS; uint32_t afwControlId = mAdapter.getAfwControlId(); if (afwControlId != mSessionId) { err = LOCATION_ERROR_ID_UNKNOWN; } else { mContext.modemPowerVote(false); mAdapter.setAfwControlId(0); if (mAdapter.mSupportNfwControl) { /* We need to disable MO (AFW) */ ContextBase::mGps_conf.GPS_LOCK |= GNSS_CONFIG_GPS_LOCK_MO; } GnssConfigGpsLock gpsLock = ContextBase::mGps_conf.GPS_LOCK; mApi.sendMsg(new LocApiMsg([&mApi = mApi, gpsLock]() { mApi.setGpsLockSync(gpsLock); })); mAdapter.mXtraObserver.updateLockStatus(gpsLock); } mAdapter.reportResponse(err, mSessionId); } }; if (mContext != NULL) { sendMsg(new MsgDisableGnss(*this, *mLocApi, *mContext, id)); } } void GnssAdapter::reportPositionEvent(const UlpLocation& ulpLocation, const GpsLocationExtended& locationExtended, enum loc_sess_status status, LocPosTechMask techMask, GnssDataNotification* pDataNotify, int msInWeek) { // this position is from QMI LOC API, then send report to engine hub // if sending is successful, we return as we will wait for final report from engine hub // if the position is called from engine hub, then send it out directly if (true == initEngHubProxy()){ mEngHubProxy->gnssReportPosition(ulpLocation, locationExtended, status); return; } if (true == ulpLocation.unpropagatedPosition) { return; } // Fix is from QMI, and it is not an // unpropagated position and engine hub is not loaded, queue the msg // when message is queued, the position can be dispatched to requesting client struct MsgReportPosition : public LocMsg { GnssAdapter& mAdapter; const UlpLocation mUlpLocation; const GpsLocationExtended mLocationExtended; loc_sess_status mStatus; LocPosTechMask mTechMask; GnssDataNotification mDataNotify; int mMsInWeek; bool mbIsDataValid; inline MsgReportPosition(GnssAdapter& adapter, const UlpLocation& ulpLocation, const GpsLocationExtended& locationExtended, loc_sess_status status, LocPosTechMask techMask, GnssDataNotification* pDataNotify, int msInWeek) : LocMsg(), mAdapter(adapter), mUlpLocation(ulpLocation), mLocationExtended(locationExtended), mStatus(status), mTechMask(techMask), mMsInWeek(msInWeek) { memset(&mDataNotify, 0, sizeof(mDataNotify)); if (pDataNotify != nullptr) { mDataNotify = *pDataNotify; mbIsDataValid = true; } else { mbIsDataValid = false; } } inline virtual void proc() const { // extract bug report info - this returns true if consumed by systemstatus SystemStatus* s = mAdapter.getSystemStatus(); if ((nullptr != s) && ((LOC_SESS_SUCCESS == mStatus) || (LOC_SESS_INTERMEDIATE == mStatus))){ s->eventPosition(mUlpLocation, mLocationExtended); } mAdapter.reportPosition(mUlpLocation, mLocationExtended, mStatus, mTechMask); if (true == mbIsDataValid) { if (-1 != mMsInWeek) { mAdapter.getDataInformation((GnssDataNotification&)mDataNotify, mMsInWeek); } mAdapter.reportData((GnssDataNotification&)mDataNotify); } } }; sendMsg(new MsgReportPosition(*this, ulpLocation, locationExtended, status, techMask, pDataNotify, msInWeek)); } void GnssAdapter::reportEnginePositionsEvent(unsigned int count, EngineLocationInfo* locationArr) { struct MsgReportEnginePositions : public LocMsg { GnssAdapter& mAdapter; unsigned int mCount; EngineLocationInfo mEngLocInfo[LOC_OUTPUT_ENGINE_COUNT]; inline MsgReportEnginePositions(GnssAdapter& adapter, unsigned int count, EngineLocationInfo* locationArr) : LocMsg(), mAdapter(adapter), mCount(count) { if (mCount > LOC_OUTPUT_ENGINE_COUNT) { mCount = LOC_OUTPUT_ENGINE_COUNT; } if (mCount > 0) { memcpy(mEngLocInfo, locationArr, sizeof(EngineLocationInfo)*mCount); } } inline virtual void proc() const { mAdapter.reportEnginePositions(mCount, mEngLocInfo); } }; sendMsg(new MsgReportEnginePositions(*this, count, locationArr)); } bool GnssAdapter::needReportForGnssClient(const UlpLocation& ulpLocation, enum loc_sess_status status, LocPosTechMask techMask) { bool reported = false; // if engine hub is enabled, aka, any of the engine services is enabled, // then always output position reported by engine hub to requesting client if (true == initEngHubProxy()) { reported = true; } else { reported = LocApiBase::needReport(ulpLocation, status, techMask); } return reported; } bool GnssAdapter::needReportForFlpClient(enum loc_sess_status status, LocPosTechMask techMask) { if ((status == LOC_SESS_INTERMEDIATE) && !(techMask & LOC_POS_TECH_MASK_SENSORS) && (!getAllowFlpNetworkFixes())) { return false; } else { return true; } } bool GnssAdapter::isFlpClient(LocationCallbacks& locationCallbacks) { return (locationCallbacks.gnssLocationInfoCb == nullptr && locationCallbacks.gnssSvCb == nullptr && locationCallbacks.gnssNmeaCb == nullptr && locationCallbacks.gnssDataCb == nullptr && locationCallbacks.gnssMeasurementsCb == nullptr); } void GnssAdapter::reportPosition(const UlpLocation& ulpLocation, const GpsLocationExtended& locationExtended, enum loc_sess_status status, LocPosTechMask techMask) { bool reportToGnssClient = needReportForGnssClient(ulpLocation, status, techMask); bool reportToFlpClient = needReportForFlpClient(status, techMask); if (reportToGnssClient || reportToFlpClient) { GnssLocationInfoNotification locationInfo = {}; convertLocationInfo(locationInfo, locationExtended); convertLocation(locationInfo.location, ulpLocation, locationExtended, techMask); for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if ((reportToFlpClient && isFlpClient(it->second)) || (reportToGnssClient && !isFlpClient(it->second))) { if (nullptr != it->second.gnssLocationInfoCb) { it->second.gnssLocationInfoCb(locationInfo); } else if ((nullptr != it->second.engineLocationsInfoCb) && (false == initEngHubProxy())) { // if engine hub is disabled, this is SPE fix from modem // we need to mark one copy marked as fused and one copy marked as PPE // and dispatch it to the engineLocationsInfoCb GnssLocationInfoNotification engLocationsInfo[2]; engLocationsInfo[0] = locationInfo; engLocationsInfo[0].locOutputEngType = LOC_OUTPUT_ENGINE_FUSED; engLocationsInfo[0].flags |= GNSS_LOCATION_INFO_OUTPUT_ENG_TYPE_BIT; engLocationsInfo[1] = locationInfo; it->second.engineLocationsInfoCb(2, engLocationsInfo); } else if (nullptr != it->second.trackingCb) { it->second.trackingCb(locationInfo.location); } } } mGnssSvIdUsedInPosAvail = false; mGnssMbSvIdUsedInPosAvail = false; if (reportToGnssClient) { if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_GNSS_SV_USED_DATA) { mGnssSvIdUsedInPosAvail = true; mGnssSvIdUsedInPosition = locationExtended.gnss_sv_used_ids; if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_MULTIBAND) { mGnssMbSvIdUsedInPosAvail = true; mGnssMbSvIdUsedInPosition = locationExtended.gnss_mb_sv_used_ids; } } // if engine hub is running and the fix is from sensor, e.g.: DRE, // inject DRE fix to modem if ((1 == ContextBase::mGps_conf.POSITION_ASSISTED_CLOCK_ESTIMATOR_ENABLED) && (true == initEngHubProxy()) && (LOC_POS_TECH_MASK_SENSORS & techMask)) { mLocApi->injectPosition(locationInfo, false); } } } if (NMEA_PROVIDER_AP == ContextBase::mGps_conf.NMEA_PROVIDER && !mTimeBasedTrackingSessions.empty()) { /*Only BlankNMEA sentence needs to be processed and sent, if both lat, long is 0 & horReliability is not set. */ bool blank_fix = ((0 == ulpLocation.gpsLocation.latitude) && (0 == ulpLocation.gpsLocation.longitude) && (LOC_RELIABILITY_NOT_SET == locationExtended.horizontal_reliability)); uint8_t generate_nmea = (reportToGnssClient && status != LOC_SESS_FAILURE && !blank_fix); std::vector nmeaArraystr; loc_nmea_generate_pos(ulpLocation, locationExtended, mLocSystemInfo, generate_nmea, nmeaArraystr); stringstream ss; for (auto itor = nmeaArraystr.begin(); itor != nmeaArraystr.end(); ++itor) { ss << *itor; } string s = ss.str(); reportNmea(s.c_str(), s.length()); } } void GnssAdapter::reportEnginePositions(unsigned int count, const EngineLocationInfo* locationArr) { bool needReportEnginePositions = false; for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.engineLocationsInfoCb) { needReportEnginePositions = true; break; } } GnssLocationInfoNotification locationInfo[LOC_OUTPUT_ENGINE_COUNT] = {}; for (unsigned int i = 0; i < count; i++) { const EngineLocationInfo* engLocation = (locationArr+i); // if it is fused/default location, call reportPosition maintain legacy behavior if ((GPS_LOCATION_EXTENDED_HAS_OUTPUT_ENG_TYPE & engLocation->locationExtended.flags) && (LOC_OUTPUT_ENGINE_FUSED == engLocation->locationExtended.locOutputEngType)) { reportPosition(engLocation->location, engLocation->locationExtended, engLocation->sessionStatus, engLocation->location.tech_mask); } if (needReportEnginePositions) { convertLocationInfo(locationInfo[i], engLocation->locationExtended); convertLocation(locationInfo[i].location, engLocation->location, engLocation->locationExtended, engLocation->location.tech_mask); } } if (needReportEnginePositions) { for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.engineLocationsInfoCb) { it->second.engineLocationsInfoCb(count, locationInfo); } } } } void GnssAdapter::reportSvEvent(const GnssSvNotification& svNotify, bool fromEngineHub) { if (!fromEngineHub) { mEngHubProxy->gnssReportSv(svNotify); if (true == initEngHubProxy()){ return; } } struct MsgReportSv : public LocMsg { GnssAdapter& mAdapter; const GnssSvNotification mSvNotify; inline MsgReportSv(GnssAdapter& adapter, const GnssSvNotification& svNotify) : LocMsg(), mAdapter(adapter), mSvNotify(svNotify) {} inline virtual void proc() const { mAdapter.reportSv((GnssSvNotification&)mSvNotify); } }; sendMsg(new MsgReportSv(*this, svNotify)); } void GnssAdapter::reportSv(GnssSvNotification& svNotify) { int numSv = svNotify.count; int16_t gnssSvId = 0; uint64_t svUsedIdMask = 0; for (int i=0; i < numSv; i++) { svUsedIdMask = 0; gnssSvId = svNotify.gnssSvs[i].svId; GnssSignalTypeMask signalTypeMask = svNotify.gnssSvs[i].gnssSignalTypeMask; switch (svNotify.gnssSvs[i].type) { case GNSS_SV_TYPE_GPS: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_GPS_L1CA: svUsedIdMask = mGnssMbSvIdUsedInPosition.gps_l1ca_sv_used_ids_mask; break; case GNSS_SIGNAL_GPS_L1C: svUsedIdMask = mGnssMbSvIdUsedInPosition.gps_l1c_sv_used_ids_mask; break; case GNSS_SIGNAL_GPS_L2: svUsedIdMask = mGnssMbSvIdUsedInPosition.gps_l2_sv_used_ids_mask; break; case GNSS_SIGNAL_GPS_L5: svUsedIdMask = mGnssMbSvIdUsedInPosition.gps_l5_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.gps_sv_used_ids_mask; } } break; case GNSS_SV_TYPE_GLONASS: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_GLONASS_G1: svUsedIdMask = mGnssMbSvIdUsedInPosition.glo_g1_sv_used_ids_mask; break; case GNSS_SIGNAL_GLONASS_G2: svUsedIdMask = mGnssMbSvIdUsedInPosition.glo_g2_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.glo_sv_used_ids_mask; } } break; case GNSS_SV_TYPE_BEIDOU: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_BEIDOU_B1I: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b1i_sv_used_ids_mask; break; case GNSS_SIGNAL_BEIDOU_B1C: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b1c_sv_used_ids_mask; break; case GNSS_SIGNAL_BEIDOU_B2I: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b2i_sv_used_ids_mask; break; case GNSS_SIGNAL_BEIDOU_B2AI: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b2ai_sv_used_ids_mask; break; case GNSS_SIGNAL_BEIDOU_B2AQ: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b2aq_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.bds_sv_used_ids_mask; } } break; case GNSS_SV_TYPE_GALILEO: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_GALILEO_E1: svUsedIdMask = mGnssMbSvIdUsedInPosition.gal_e1_sv_used_ids_mask; break; case GNSS_SIGNAL_GALILEO_E5A: svUsedIdMask = mGnssMbSvIdUsedInPosition.gal_e5a_sv_used_ids_mask; break; case GNSS_SIGNAL_GALILEO_E5B: svUsedIdMask = mGnssMbSvIdUsedInPosition.gal_e5b_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.gal_sv_used_ids_mask; } } break; case GNSS_SV_TYPE_QZSS: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_QZSS_L1CA: svUsedIdMask = mGnssMbSvIdUsedInPosition.qzss_l1ca_sv_used_ids_mask; break; case GNSS_SIGNAL_QZSS_L1S: svUsedIdMask = mGnssMbSvIdUsedInPosition.qzss_l1s_sv_used_ids_mask; break; case GNSS_SIGNAL_QZSS_L2: svUsedIdMask = mGnssMbSvIdUsedInPosition.qzss_l2_sv_used_ids_mask; break; case GNSS_SIGNAL_QZSS_L5: svUsedIdMask = mGnssMbSvIdUsedInPosition.qzss_l5_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.qzss_sv_used_ids_mask; } } // QZSS SV id's need to reported as it is to framework, since // framework expects it as it is. See GnssStatus.java. // SV id passed to here by LocApi is 1-based. svNotify.gnssSvs[i].svId += (QZSS_SV_PRN_MIN - 1); break; case GNSS_SV_TYPE_NAVIC: if (mGnssSvIdUsedInPosAvail) { svUsedIdMask = mGnssSvIdUsedInPosition.navic_sv_used_ids_mask; } break; default: svUsedIdMask = 0; break; } // If SV ID was used in previous position fix, then set USED_IN_FIX // flag, else clear the USED_IN_FIX flag. if (svUsedIdMask & (1 << (gnssSvId - 1))) { svNotify.gnssSvs[i].gnssSvOptionsMask |= GNSS_SV_OPTIONS_USED_IN_FIX_BIT; } } for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.gnssSvCb) { it->second.gnssSvCb(svNotify); } } if (NMEA_PROVIDER_AP == ContextBase::mGps_conf.NMEA_PROVIDER && !mTimeBasedTrackingSessions.empty()) { std::vector nmeaArraystr; loc_nmea_generate_sv(svNotify, nmeaArraystr); stringstream ss; for (auto itor = nmeaArraystr.begin(); itor != nmeaArraystr.end(); ++itor) { ss << *itor; } string s = ss.str(); reportNmea(s.c_str(), s.length()); } mGnssSvIdUsedInPosAvail = false; } void GnssAdapter::reportNmeaEvent(const char* nmea, size_t length) { if (NMEA_PROVIDER_AP == ContextBase::mGps_conf.NMEA_PROVIDER && !loc_nmea_is_debug(nmea, length)) { return; } struct MsgReportNmea : public LocMsg { GnssAdapter& mAdapter; const char* mNmea; size_t mLength; inline MsgReportNmea(GnssAdapter& adapter, const char* nmea, size_t length) : LocMsg(), mAdapter(adapter), mNmea(new char[length+1]), mLength(length) { if (mNmea == nullptr) { LOC_LOGE("%s] new allocation failed, fatal error.", __func__); return; } strlcpy((char*)mNmea, nmea, length+1); } inline virtual ~MsgReportNmea() { delete[] mNmea; } inline virtual void proc() const { // extract bug report info - this returns true if consumed by systemstatus bool ret = false; SystemStatus* s = mAdapter.getSystemStatus(); if (nullptr != s) { ret = s->setNmeaString(mNmea, mLength); } if (false == ret) { // forward NMEA message to upper layer mAdapter.reportNmea(mNmea, mLength); } } }; sendMsg(new MsgReportNmea(*this, nmea, length)); } void GnssAdapter::reportNmea(const char* nmea, size_t length) { GnssNmeaNotification nmeaNotification = {}; nmeaNotification.size = sizeof(GnssNmeaNotification); struct timeval tv; gettimeofday(&tv, (struct timezone *) NULL); int64_t now = tv.tv_sec * 1000LL + tv.tv_usec / 1000; nmeaNotification.timestamp = now; nmeaNotification.nmea = nmea; nmeaNotification.length = length; for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.gnssNmeaCb) { it->second.gnssNmeaCb(nmeaNotification); } } } void GnssAdapter::reportDataEvent(const GnssDataNotification& dataNotify, int msInWeek) { struct MsgReportData : public LocMsg { GnssAdapter& mAdapter; GnssDataNotification mDataNotify; int mMsInWeek; inline MsgReportData(GnssAdapter& adapter, const GnssDataNotification& dataNotify, int msInWeek) : LocMsg(), mAdapter(adapter), mDataNotify(dataNotify), mMsInWeek(msInWeek) { } inline virtual void proc() const { if (-1 != mMsInWeek) { mAdapter.getDataInformation((GnssDataNotification&)mDataNotify, mMsInWeek); } mAdapter.reportData((GnssDataNotification&)mDataNotify); } }; sendMsg(new MsgReportData(*this, dataNotify, msInWeek)); } void GnssAdapter::reportData(GnssDataNotification& dataNotify) { for (int sig = 0; sig < GNSS_LOC_MAX_NUMBER_OF_SIGNAL_TYPES; sig++) { if (GNSS_LOC_DATA_JAMMER_IND_BIT == (dataNotify.gnssDataMask[sig] & GNSS_LOC_DATA_JAMMER_IND_BIT)) { LOC_LOGv("jammerInd[%d]=%f", sig, dataNotify.jammerInd[sig]); } if (GNSS_LOC_DATA_AGC_BIT == (dataNotify.gnssDataMask[sig] & GNSS_LOC_DATA_AGC_BIT)) { LOC_LOGv("agc[%d]=%f", sig, dataNotify.agc[sig]); } } for (auto it = mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.gnssDataCb) { it->second.gnssDataCb(dataNotify); } } } bool GnssAdapter::requestNiNotifyEvent(const GnssNiNotification ¬ify, const void* data, const LocInEmergency emergencyState) { LOC_LOGI("%s]: notif_type: %d, timeout: %d, default_resp: %d" "requestor_id: %s (encoding: %d) text: %s text (encoding: %d) extras: %s", __func__, notify.type, notify.timeout, notify.timeoutResponse, notify.requestor, notify.requestorEncoding, notify.message, notify.messageEncoding, notify.extras); struct MsgReportNiNotify : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; const GnssNiNotification mNotify; const void* mData; const LocInEmergency mEmergencyState; inline MsgReportNiNotify(GnssAdapter& adapter, LocApiBase& api, const GnssNiNotification& notify, const void* data, const LocInEmergency emergencyState) : LocMsg(), mAdapter(adapter), mApi(api), mNotify(notify), mData(data), mEmergencyState(emergencyState) {} inline virtual void proc() const { bool bIsInEmergency = false; bool bInformNiAccept = false; bIsInEmergency = ((LOC_IN_EMERGENCY_UNKNOWN == mEmergencyState) && mAdapter.getE911State()) || // older modems (LOC_IN_EMERGENCY_SET == mEmergencyState); // newer modems if (GNSS_NI_TYPE_EMERGENCY_SUPL == mNotify.type) { bInformNiAccept = bIsInEmergency || (GNSS_CONFIG_SUPL_EMERGENCY_SERVICES_NO == ContextBase::mGps_conf.SUPL_ES); if (bInformNiAccept) { mAdapter.requestNiNotify(mNotify, mData, bInformNiAccept); } else { mApi.informNiResponse(GNSS_NI_RESPONSE_DENY, mData); } } else if (GNSS_NI_TYPE_CONTROL_PLANE == mNotify.type) { if (bIsInEmergency && (1 == ContextBase::mGps_conf.CP_MTLR_ES)) { mApi.informNiResponse(GNSS_NI_RESPONSE_ACCEPT, mData); } else { mAdapter.requestNiNotify(mNotify, mData, false); } } else { mAdapter.requestNiNotify(mNotify, mData, false); } } }; sendMsg(new MsgReportNiNotify(*this, *mLocApi, notify, data, emergencyState)); return true; } void GnssAdapter::reportLocationSystemInfoEvent(const LocationSystemInfo & locationSystemInfo) { // send system info to engine hub mEngHubProxy->gnssReportSystemInfo(locationSystemInfo); struct MsgLocationSystemInfo : public LocMsg { GnssAdapter& mAdapter; LocationSystemInfo mSystemInfo; inline MsgLocationSystemInfo(GnssAdapter& adapter, const LocationSystemInfo& systemInfo) : LocMsg(), mAdapter(adapter), mSystemInfo(systemInfo) {} inline virtual void proc() const { mAdapter.reportLocationSystemInfo(mSystemInfo); } }; sendMsg(new MsgLocationSystemInfo(*this, locationSystemInfo)); } void GnssAdapter::reportLocationSystemInfo(const LocationSystemInfo & locationSystemInfo) { // save the info into the master copy piece by piece, as other system info // may come at different time if (locationSystemInfo.systemInfoMask & LOCATION_SYS_INFO_LEAP_SECOND) { mLocSystemInfo.systemInfoMask |= LOCATION_SYS_INFO_LEAP_SECOND; const LeapSecondSystemInfo &srcLeapSecondSysInfo = locationSystemInfo.leapSecondSysInfo; LeapSecondSystemInfo &dstLeapSecondSysInfo = mLocSystemInfo.leapSecondSysInfo; if (srcLeapSecondSysInfo.leapSecondInfoMask & LEAP_SECOND_SYS_INFO_CURRENT_LEAP_SECONDS_BIT) { dstLeapSecondSysInfo.leapSecondInfoMask |= LEAP_SECOND_SYS_INFO_CURRENT_LEAP_SECONDS_BIT; dstLeapSecondSysInfo.leapSecondCurrent = srcLeapSecondSysInfo.leapSecondCurrent; } // once leap second change event is complete, modem may send up event invalidate the leap // second change info while AP is still processing report during leap second transition // so, we choose to keep this info around even though it is old if (srcLeapSecondSysInfo.leapSecondInfoMask & LEAP_SECOND_SYS_INFO_LEAP_SECOND_CHANGE_BIT) { dstLeapSecondSysInfo.leapSecondInfoMask |= LEAP_SECOND_SYS_INFO_LEAP_SECOND_CHANGE_BIT; dstLeapSecondSysInfo.leapSecondChangeInfo = srcLeapSecondSysInfo.leapSecondChangeInfo; } } // we received new info, inform client of the newly received info if (locationSystemInfo.systemInfoMask) { for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (it->second.locationSystemInfoCb != nullptr) { it->second.locationSystemInfoCb(locationSystemInfo); } } } } static void* niThreadProc(void *args) { NiSession* pSession = (NiSession*)args; int rc = 0; /* return code from pthread calls */ struct timespec present_time; struct timespec expire_time; pthread_mutex_lock(&pSession->tLock); /* Calculate absolute expire time */ clock_gettime(CLOCK_MONOTONIC, &present_time); expire_time.tv_sec = present_time.tv_sec + pSession->respTimeLeft; expire_time.tv_nsec = present_time.tv_nsec; LOC_LOGD("%s]: time out set for abs time %ld with delay %d sec", __func__, (long)expire_time.tv_sec, pSession->respTimeLeft); while (!pSession->respRecvd) { rc = pthread_cond_timedwait(&pSession->tCond, &pSession->tLock, &expire_time); if (rc == ETIMEDOUT) { pSession->resp = GNSS_NI_RESPONSE_NO_RESPONSE; LOC_LOGD("%s]: time out after valting for specified time. Ret Val %d", __func__, rc); break; } } LOC_LOGD("%s]: Java layer has sent us a user response and return value from " "pthread_cond_timedwait = %d pSession->resp is %u", __func__, rc, pSession->resp); pSession->respRecvd = false; /* Reset the user response flag for the next session*/ // adding this check to support modem restart, in which case, we need the thread // to exit without calling sending data. We made sure that rawRequest is NULL in // loc_eng_ni_reset_on_engine_restart() GnssAdapter* adapter = pSession->adapter; GnssNiResponse resp; void* rawRequest = NULL; bool sendResponse = false; if (NULL != pSession->rawRequest) { if (pSession->resp != GNSS_NI_RESPONSE_IGNORE) { resp = pSession->resp; rawRequest = pSession->rawRequest; sendResponse = true; } else { free(pSession->rawRequest); } pSession->rawRequest = NULL; } pthread_mutex_unlock(&pSession->tLock); pSession->respTimeLeft = 0; pSession->reqID = 0; if (sendResponse) { adapter->gnssNiResponseCommand(resp, rawRequest); } return NULL; } bool GnssAdapter::requestNiNotify(const GnssNiNotification& notify, const void* data, const bool bInformNiAccept) { NiSession* pSession = NULL; gnssNiCallback gnssNiCb = nullptr; for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.gnssNiCb) { gnssNiCb = it->second.gnssNiCb; break; } } if (nullptr == gnssNiCb) { if (GNSS_NI_TYPE_EMERGENCY_SUPL == notify.type) { if (bInformNiAccept) { mLocApi->informNiResponse(GNSS_NI_RESPONSE_ACCEPT, data); NiData& niData = getNiData(); // ignore any SUPL NI non-Es session if a SUPL NI ES is accepted if (NULL != niData.session.rawRequest) { pthread_mutex_lock(&niData.session.tLock); niData.session.resp = GNSS_NI_RESPONSE_IGNORE; niData.session.respRecvd = true; pthread_cond_signal(&niData.session.tCond); pthread_mutex_unlock(&niData.session.tLock); } } } EXIT_LOG(%s, "no clients with gnssNiCb."); return false; } if (notify.type == GNSS_NI_TYPE_EMERGENCY_SUPL) { if (NULL != mNiData.sessionEs.rawRequest) { LOC_LOGI("%s]: supl es NI in progress, new supl es NI ignored, type: %d", __func__, notify.type); if (NULL != data) { free((void*)data); } } else { pSession = &mNiData.sessionEs; } } else { if (NULL != mNiData.session.rawRequest || NULL != mNiData.sessionEs.rawRequest) { LOC_LOGI("%s]: supl NI in progress, new supl NI ignored, type: %d", __func__, notify.type); if (NULL != data) { free((void*)data); } } else { pSession = &mNiData.session; } } if (pSession) { /* Save request */ pSession->rawRequest = (void*)data; pSession->reqID = ++mNiData.reqIDCounter; pSession->adapter = this; int sessionId = pSession->reqID; /* For robustness, spawn a thread at this point to timeout to clear up the notification * status, even though the OEM layer in java does not do so. **/ pSession->respTimeLeft = 5 + (notify.timeout != 0 ? notify.timeout : LOC_NI_NO_RESPONSE_TIME); int rc = 0; rc = pthread_create(&pSession->thread, NULL, niThreadProc, pSession); if (rc) { LOC_LOGE("%s]: Loc NI thread is not created.", __func__); } rc = pthread_detach(pSession->thread); if (rc) { LOC_LOGE("%s]: Loc NI thread is not detached.", __func__); } if (nullptr != gnssNiCb) { gnssNiCb(sessionId, notify); } } return true; } void GnssAdapter::reportGnssMeasurementsEvent(const GnssMeasurements& gnssMeasurements, int msInWeek) { LOC_LOGD("%s]: msInWeek=%d", __func__, msInWeek); if (0 != gnssMeasurements.gnssMeasNotification.count) { struct MsgReportGnssMeasurementData : public LocMsg { GnssAdapter& mAdapter; GnssMeasurements mGnssMeasurements; GnssMeasurementsNotification mMeasurementsNotify; inline MsgReportGnssMeasurementData(GnssAdapter& adapter, const GnssMeasurements& gnssMeasurements, int msInWeek) : LocMsg(), mAdapter(adapter), mMeasurementsNotify(gnssMeasurements.gnssMeasNotification) { if (-1 != msInWeek) { mAdapter.getAgcInformation(mMeasurementsNotify, msInWeek); } } inline virtual void proc() const { mAdapter.reportGnssMeasurementData(mMeasurementsNotify); } }; sendMsg(new MsgReportGnssMeasurementData(*this, gnssMeasurements, msInWeek)); } mEngHubProxy->gnssReportSvMeasurement(gnssMeasurements.gnssSvMeasurementSet); } void GnssAdapter::reportGnssMeasurementData(const GnssMeasurementsNotification& measurements) { for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.gnssMeasurementsCb) { it->second.gnssMeasurementsCb(measurements); } } } void GnssAdapter::reportSvPolynomialEvent(GnssSvPolynomial &svPolynomial) { LOC_LOGD("%s]: ", __func__); mEngHubProxy->gnssReportSvPolynomial(svPolynomial); } void GnssAdapter::reportSvEphemerisEvent(GnssSvEphemerisReport & svEphemeris) { LOC_LOGD("%s]:", __func__); mEngHubProxy->gnssReportSvEphemeris(svEphemeris); } bool GnssAdapter::requestOdcpiEvent(OdcpiRequestInfo& request) { struct MsgRequestOdcpi : public LocMsg { GnssAdapter& mAdapter; OdcpiRequestInfo mOdcpiRequest; inline MsgRequestOdcpi(GnssAdapter& adapter, OdcpiRequestInfo& request) : LocMsg(), mAdapter(adapter), mOdcpiRequest(request) {} inline virtual void proc() const { mAdapter.requestOdcpi(mOdcpiRequest); } }; sendMsg(new MsgRequestOdcpi(*this, request)); return true; } void GnssAdapter::requestOdcpi(const OdcpiRequestInfo& request) { if (nullptr != mOdcpiRequestCb) { LOC_LOGd("request: type %d, tbf %d, isEmergency %d" " requestActive: %d timerActive: %d", request.type, request.tbfMillis, request.isEmergencyMode, mOdcpiRequestActive, mOdcpiTimer.isActive()); // ODCPI START and ODCPI STOP from modem can come in quick succession // so the mOdcpiTimer helps avoid spamming the framework as well as // extending the odcpi session past 30 seconds if needed if (ODCPI_REQUEST_TYPE_START == request.type) { if (false == mOdcpiRequestActive && false == mOdcpiTimer.isActive()) { mOdcpiRequestCb(request); mOdcpiRequestActive = true; mOdcpiTimer.start(); // if the current active odcpi session is non-emergency, and the new // odcpi request is emergency, replace the odcpi request with new request // and restart the timer } else if (false == mOdcpiRequest.isEmergencyMode && true == request.isEmergencyMode) { mOdcpiRequestCb(request); mOdcpiRequestActive = true; if (true == mOdcpiTimer.isActive()) { mOdcpiTimer.restart(); } else { mOdcpiTimer.start(); } // if ODCPI request is not active but the timer is active, then // just update the active state and wait for timer to expire // before requesting new ODCPI to avoid spamming ODCPI requests } else if (false == mOdcpiRequestActive && true == mOdcpiTimer.isActive()) { mOdcpiRequestActive = true; } mOdcpiRequest = request; // the request is being stopped, but allow timer to expire first // before stopping the timer just in case more ODCPI requests come // to avoid spamming more odcpi requests to the framework } else { mOdcpiRequestActive = false; } } else { LOC_LOGw("ODCPI request not supported"); } } bool GnssAdapter::reportDeleteAidingDataEvent(GnssAidingData& aidingData) { LOC_LOGD("%s]:", __func__); mEngHubProxy->gnssDeleteAidingData(aidingData); return true; } bool GnssAdapter::reportKlobucharIonoModelEvent(GnssKlobucharIonoModel & ionoModel) { LOC_LOGD("%s]:", __func__); mEngHubProxy->gnssReportKlobucharIonoModel(ionoModel); return true; } bool GnssAdapter::reportGnssAdditionalSystemInfoEvent( GnssAdditionalSystemInfo & additionalSystemInfo) { LOC_LOGD("%s]:", __func__); mEngHubProxy->gnssReportAdditionalSystemInfo(additionalSystemInfo); return true; } void GnssAdapter::initOdcpiCommand(const OdcpiRequestCallback& callback) { struct MsgInitOdcpi : public LocMsg { GnssAdapter& mAdapter; OdcpiRequestCallback mOdcpiCb; inline MsgInitOdcpi(GnssAdapter& adapter, const OdcpiRequestCallback& callback) : LocMsg(), mAdapter(adapter), mOdcpiCb(callback) {} inline virtual void proc() const { mAdapter.initOdcpi(mOdcpiCb); } }; sendMsg(new MsgInitOdcpi(*this, callback)); } void GnssAdapter::initOdcpi(const OdcpiRequestCallback& callback) { mOdcpiRequestCb = callback; /* Register for WIFI request */ updateEvtMask(LOC_API_ADAPTER_BIT_REQUEST_WIFI, LOC_REGISTRATION_MASK_ENABLED); } void GnssAdapter::injectOdcpiCommand(const Location& location) { struct MsgInjectOdcpi : public LocMsg { GnssAdapter& mAdapter; Location mLocation; inline MsgInjectOdcpi(GnssAdapter& adapter, const Location& location) : LocMsg(), mAdapter(adapter), mLocation(location) {} inline virtual void proc() const { mAdapter.injectOdcpi(mLocation); } }; sendMsg(new MsgInjectOdcpi(*this, location)); } void GnssAdapter::injectOdcpi(const Location& location) { LOC_LOGd("ODCPI Injection: requestActive: %d timerActive: %d" "lat %.7f long %.7f", mOdcpiRequestActive, mOdcpiTimer.isActive(), location.latitude, location.longitude); mLocApi->injectPosition(location, true); } // Called in the context of LocTimer thread void OdcpiTimer::timeOutCallback() { if (nullptr != mAdapter) { mAdapter->odcpiTimerExpireEvent(); } } // Called in the context of LocTimer thread void GnssAdapter::odcpiTimerExpireEvent() { struct MsgOdcpiTimerExpire : public LocMsg { GnssAdapter& mAdapter; inline MsgOdcpiTimerExpire(GnssAdapter& adapter) : LocMsg(), mAdapter(adapter) {} inline virtual void proc() const { mAdapter.odcpiTimerExpire(); } }; sendMsg(new MsgOdcpiTimerExpire(*this)); } void GnssAdapter::odcpiTimerExpire() { LOC_LOGd("requestActive: %d timerActive: %d", mOdcpiRequestActive, mOdcpiTimer.isActive()); // if ODCPI request is still active after timer // expires, request again and restart timer if (mOdcpiRequestActive) { mOdcpiRequestCb(mOdcpiRequest); mOdcpiTimer.restart(); } else { mOdcpiTimer.stop(); } } void GnssAdapter::invokeGnssEnergyConsumedCallback(uint64_t energyConsumedSinceFirstBoot) { if (mGnssEnergyConsumedCb) { mGnssEnergyConsumedCb(energyConsumedSinceFirstBoot); mGnssEnergyConsumedCb = nullptr; } } bool GnssAdapter::reportGnssEngEnergyConsumedEvent(uint64_t energyConsumedSinceFirstBoot){ LOC_LOGD("%s]: %" PRIu64 " ", __func__, energyConsumedSinceFirstBoot); struct MsgReportGnssGnssEngEnergyConsumed : public LocMsg { GnssAdapter& mAdapter; uint64_t mGnssEnergyConsumedSinceFirstBoot; inline MsgReportGnssGnssEngEnergyConsumed(GnssAdapter& adapter, uint64_t energyConsumed) : LocMsg(), mAdapter(adapter), mGnssEnergyConsumedSinceFirstBoot(energyConsumed) {} inline virtual void proc() const { mAdapter.invokeGnssEnergyConsumedCallback(mGnssEnergyConsumedSinceFirstBoot); } }; sendMsg(new MsgReportGnssGnssEngEnergyConsumed(*this, energyConsumedSinceFirstBoot)); return true; } void GnssAdapter::initDefaultAgps() { LOC_LOGD("%s]: ", __func__); void *handle = nullptr; if ((handle = dlopen("libloc_net_iface.so", RTLD_NOW)) == nullptr) { LOC_LOGD("%s]: libloc_net_iface.so not found !", __func__); return; } LocAgpsGetAgpsCbInfo getAgpsCbInfo = (LocAgpsGetAgpsCbInfo) dlsym(handle, "LocNetIfaceAgps_getAgpsCbInfo"); if (getAgpsCbInfo == nullptr) { LOC_LOGE("%s]: Failed to get method LocNetIfaceAgps_getStatusCb", __func__); dlclose(handle); return; } AgpsCbInfo& cbInfo = getAgpsCbInfo(agpsOpenResultCb, agpsCloseResultCb, this); if (cbInfo.statusV4Cb == nullptr) { LOC_LOGE("%s]: statusV4Cb is nullptr!", __func__); dlclose(handle); return; } initAgps(cbInfo); } void GnssAdapter::initDefaultAgpsCommand() { LOC_LOGD("%s]: ", __func__); struct MsgInitDefaultAgps : public LocMsg { GnssAdapter& mAdapter; inline MsgInitDefaultAgps(GnssAdapter& adapter) : LocMsg(), mAdapter(adapter) { } inline virtual void proc() const { mAdapter.initDefaultAgps(); } }; sendMsg(new MsgInitDefaultAgps(*this)); } /* INIT LOC AGPS MANAGER */ void GnssAdapter::initAgps(const AgpsCbInfo& cbInfo) { LOC_LOGD("%s]:cbInfo.atlType - %d", __func__, cbInfo.atlType); if (!((ContextBase::mGps_conf.CAPABILITIES & LOC_GPS_CAPABILITY_MSB) || (ContextBase::mGps_conf.CAPABILITIES & LOC_GPS_CAPABILITY_MSA))) { return; } mAgpsManager.createAgpsStateMachines(cbInfo); /* Register for AGPS event mask */ updateEvtMask(LOC_API_ADAPTER_BIT_LOCATION_SERVER_REQUEST, LOC_REGISTRATION_MASK_ENABLED); } void GnssAdapter::initAgpsCommand(const AgpsCbInfo& cbInfo){ LOC_LOGI("GnssAdapter::initAgpsCommand"); /* Message to initialize AGPS module */ struct AgpsMsgInit: public LocMsg { const AgpsCbInfo mCbInfo; GnssAdapter& mAdapter; inline AgpsMsgInit(const AgpsCbInfo& cbInfo, GnssAdapter& adapter) : LocMsg(), mCbInfo(cbInfo), mAdapter(adapter) { LOC_LOGV("AgpsMsgInit"); } inline virtual void proc() const { LOC_LOGV("AgpsMsgInit::proc()"); mAdapter.initAgps(mCbInfo); } }; /* Send message to initialize AGPS Manager */ sendMsg(new AgpsMsgInit(cbInfo, *this)); } void GnssAdapter::initNfwCommand(const NfwCbInfo& cbInfo) { LOC_LOGi("GnssAdapter::initNfwCommand"); /* Message to initialize NFW */ struct MsgInitNfw : public LocMsg { const NfwCbInfo mCbInfo; GnssAdapter& mAdapter; inline MsgInitNfw(const NfwCbInfo& cbInfo, GnssAdapter& adapter) : LocMsg(), mCbInfo(cbInfo), mAdapter(adapter) { LOC_LOGv("MsgInitNfw"); } inline virtual void proc() const { LOC_LOGv("MsgInitNfw::proc()"); mAdapter.initNfw(mCbInfo); } }; /* Send message to initialize NFW */ sendMsg(new MsgInitNfw(cbInfo, *this)); } void GnssAdapter::reportNfwNotificationEvent(GnssNfwNotification& notification) { LOC_LOGi("GnssAdapter::reportNfwNotificationEvent"); struct MsgReportNfwNotification : public LocMsg { const GnssNfwNotification mNotification; GnssAdapter& mAdapter; inline MsgReportNfwNotification(const GnssNfwNotification& notification, GnssAdapter& adapter) : LocMsg(), mNotification(notification), mAdapter(adapter) { LOC_LOGv("MsgReportNfwNotification"); } inline virtual void proc() const { LOC_LOGv("MsgReportNfwNotification::proc()"); mAdapter.reportNfwNotification(mNotification); } }; sendMsg(new MsgReportNfwNotification(notification, *this)); } /* GnssAdapter::requestATL * Method triggered in QMI thread as part of handling below message: * eQMI_LOC_SERVER_REQUEST_OPEN_V02 * Triggers the AGPS state machine to setup AGPS call for below WWAN types: * eQMI_LOC_WWAN_TYPE_INTERNET_V02 * eQMI_LOC_WWAN_TYPE_AGNSS_V02 * eQMI_LOC_WWAN_TYPE_AGNSS_EMERGENCY_V02 */ bool GnssAdapter::requestATL(int connHandle, LocAGpsType agpsType, LocApnTypeMask apnTypeMask){ LOC_LOGI("GnssAdapter::requestATL handle=%d agpsType=0x%X apnTypeMask=0x%X", connHandle, agpsType, apnTypeMask); sendMsg( new AgpsMsgRequestATL( &mAgpsManager, connHandle, (AGpsExtType)agpsType, apnTypeMask)); return true; } /* GnssAdapter::releaseATL * Method triggered in QMI thread as part of handling below message: * eQMI_LOC_SERVER_REQUEST_CLOSE_V02 * Triggers teardown of an existing AGPS call */ bool GnssAdapter::releaseATL(int connHandle){ LOC_LOGI("GnssAdapter::releaseATL"); /* Release SUPL/INTERNET/SUPL_ES ATL */ struct AgpsMsgReleaseATL: public LocMsg { AgpsManager* mAgpsManager; int mConnHandle; inline AgpsMsgReleaseATL(AgpsManager* agpsManager, int connHandle) : LocMsg(), mAgpsManager(agpsManager), mConnHandle(connHandle) { LOC_LOGV("AgpsMsgReleaseATL"); } inline virtual void proc() const { LOC_LOGV("AgpsMsgReleaseATL::proc()"); mAgpsManager->releaseATL(mConnHandle); } }; sendMsg( new AgpsMsgReleaseATL(&mAgpsManager, connHandle)); return true; } void GnssAdapter::dataConnOpenCommand( AGpsExtType agpsType, const char* apnName, int apnLen, AGpsBearerType bearerType){ LOC_LOGI("GnssAdapter::frameworkDataConnOpen"); struct AgpsMsgAtlOpenSuccess: public LocMsg { AgpsManager* mAgpsManager; AGpsExtType mAgpsType; char* mApnName; int mApnLen; AGpsBearerType mBearerType; inline AgpsMsgAtlOpenSuccess(AgpsManager* agpsManager, AGpsExtType agpsType, const char* apnName, int apnLen, AGpsBearerType bearerType) : LocMsg(), mAgpsManager(agpsManager), mAgpsType(agpsType), mApnName( new char[apnLen + 1]), mApnLen(apnLen), mBearerType(bearerType) { LOC_LOGV("AgpsMsgAtlOpenSuccess"); if (mApnName == nullptr) { LOC_LOGE("%s] new allocation failed, fatal error.", __func__); // Reporting the failure here mAgpsManager->reportAtlClosed(mAgpsType); return; } memcpy(mApnName, apnName, apnLen); mApnName[apnLen] = 0; } inline ~AgpsMsgAtlOpenSuccess() { delete[] mApnName; } inline virtual void proc() const { LOC_LOGV("AgpsMsgAtlOpenSuccess::proc()"); mAgpsManager->reportAtlOpenSuccess(mAgpsType, mApnName, mApnLen, mBearerType); } }; // Added inital length checks for apnlen check to avoid security issues // In case of failure reporting the same if (NULL == apnName || apnLen <= 0 || apnLen > MAX_APN_LEN || (strlen(apnName) != apnLen)) { LOC_LOGe("%s]: incorrect apnlen length or incorrect apnName", __func__); mAgpsManager.reportAtlClosed(agpsType); } else { sendMsg( new AgpsMsgAtlOpenSuccess( &mAgpsManager, agpsType, apnName, apnLen, bearerType)); } } void GnssAdapter::dataConnClosedCommand(AGpsExtType agpsType){ LOC_LOGI("GnssAdapter::frameworkDataConnClosed"); struct AgpsMsgAtlClosed: public LocMsg { AgpsManager* mAgpsManager; AGpsExtType mAgpsType; inline AgpsMsgAtlClosed(AgpsManager* agpsManager, AGpsExtType agpsType) : LocMsg(), mAgpsManager(agpsManager), mAgpsType(agpsType) { LOC_LOGV("AgpsMsgAtlClosed"); } inline virtual void proc() const { LOC_LOGV("AgpsMsgAtlClosed::proc()"); mAgpsManager->reportAtlClosed(mAgpsType); } }; sendMsg( new AgpsMsgAtlClosed(&mAgpsManager, (AGpsExtType)agpsType)); } void GnssAdapter::dataConnFailedCommand(AGpsExtType agpsType){ LOC_LOGI("GnssAdapter::frameworkDataConnFailed"); struct AgpsMsgAtlOpenFailed: public LocMsg { AgpsManager* mAgpsManager; AGpsExtType mAgpsType; inline AgpsMsgAtlOpenFailed(AgpsManager* agpsManager, AGpsExtType agpsType) : LocMsg(), mAgpsManager(agpsManager), mAgpsType(agpsType) { LOC_LOGV("AgpsMsgAtlOpenFailed"); } inline virtual void proc() const { LOC_LOGV("AgpsMsgAtlOpenFailed::proc()"); mAgpsManager->reportAtlOpenFailed(mAgpsType); } }; sendMsg( new AgpsMsgAtlOpenFailed(&mAgpsManager, (AGpsExtType)agpsType)); } void GnssAdapter::convertSatelliteInfo(std::vector& out, const GnssSvType& in_constellation, const SystemStatusReports& in) { uint64_t sv_mask = 0ULL; uint32_t svid_min = 0; uint32_t svid_num = 0; uint32_t svid_idx = 0; uint64_t eph_health_good_mask = 0ULL; uint64_t eph_health_bad_mask = 0ULL; uint64_t server_perdiction_available_mask = 0ULL; float server_perdiction_age = 0.0f; // set constellationi based parameters switch (in_constellation) { case GNSS_SV_TYPE_GPS: svid_min = GNSS_BUGREPORT_GPS_MIN; svid_num = GPS_NUM; svid_idx = 0; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mGpsGoodMask; eph_health_bad_mask = in.mSvHealth.back().mGpsBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mGpsXtraValid; server_perdiction_age = (float)(in.mXtra.back().mGpsXtraAge); } break; case GNSS_SV_TYPE_GLONASS: svid_min = GNSS_BUGREPORT_GLO_MIN; svid_num = GLO_NUM; svid_idx = GPS_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mGloGoodMask; eph_health_bad_mask = in.mSvHealth.back().mGloBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mGloXtraValid; server_perdiction_age = (float)(in.mXtra.back().mGloXtraAge); } break; case GNSS_SV_TYPE_QZSS: svid_min = GNSS_BUGREPORT_QZSS_MIN; svid_num = QZSS_NUM; svid_idx = GPS_NUM+GLO_NUM+BDS_NUM+GAL_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mQzssGoodMask; eph_health_bad_mask = in.mSvHealth.back().mQzssBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mQzssXtraValid; server_perdiction_age = (float)(in.mXtra.back().mQzssXtraAge); } break; case GNSS_SV_TYPE_BEIDOU: svid_min = GNSS_BUGREPORT_BDS_MIN; svid_num = BDS_NUM; svid_idx = GPS_NUM+GLO_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mBdsGoodMask; eph_health_bad_mask = in.mSvHealth.back().mBdsBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mBdsXtraValid; server_perdiction_age = (float)(in.mXtra.back().mBdsXtraAge); } break; case GNSS_SV_TYPE_GALILEO: svid_min = GNSS_BUGREPORT_GAL_MIN; svid_num = GAL_NUM; svid_idx = GPS_NUM+GLO_NUM+BDS_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mGalGoodMask; eph_health_bad_mask = in.mSvHealth.back().mGalBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mGalXtraValid; server_perdiction_age = (float)(in.mXtra.back().mGalXtraAge); } break; case GNSS_SV_TYPE_NAVIC: svid_min = GNSS_BUGREPORT_NAVIC_MIN; svid_num = NAVIC_NUM; svid_idx = GPS_NUM+GLO_NUM+QZSS_NUM+BDS_NUM+GAL_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mNavicGoodMask; eph_health_bad_mask = in.mSvHealth.back().mNavicBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mNavicXtraValid; server_perdiction_age = (float)(in.mXtra.back().mNavicXtraAge); } break; default: return; } // extract each sv info from systemstatus report for(uint32_t i=0; igetReport(reports, true); r.size = sizeof(r); // location block r.mLocation.size = sizeof(r.mLocation); if(!reports.mLocation.empty() && reports.mLocation.back().mValid) { r.mLocation.mValid = true; r.mLocation.mLocation.latitude = reports.mLocation.back().mLocation.gpsLocation.latitude; r.mLocation.mLocation.longitude = reports.mLocation.back().mLocation.gpsLocation.longitude; r.mLocation.mLocation.altitude = reports.mLocation.back().mLocation.gpsLocation.altitude; r.mLocation.mLocation.speed = (double)(reports.mLocation.back().mLocation.gpsLocation.speed); r.mLocation.mLocation.bearing = (double)(reports.mLocation.back().mLocation.gpsLocation.bearing); r.mLocation.mLocation.accuracy = (double)(reports.mLocation.back().mLocation.gpsLocation.accuracy); r.mLocation.verticalAccuracyMeters = reports.mLocation.back().mLocationEx.vert_unc; r.mLocation.speedAccuracyMetersPerSecond = reports.mLocation.back().mLocationEx.speed_unc; r.mLocation.bearingAccuracyDegrees = reports.mLocation.back().mLocationEx.bearing_unc; r.mLocation.mUtcReported = reports.mLocation.back().mUtcReported; } else if(!reports.mBestPosition.empty() && reports.mBestPosition.back().mValid) { r.mLocation.mValid = true; r.mLocation.mLocation.latitude = (double)(reports.mBestPosition.back().mBestLat) * RAD2DEG; r.mLocation.mLocation.longitude = (double)(reports.mBestPosition.back().mBestLon) * RAD2DEG; r.mLocation.mLocation.altitude = reports.mBestPosition.back().mBestAlt; r.mLocation.mLocation.accuracy = (double)(reports.mBestPosition.back().mBestHepe); r.mLocation.mUtcReported = reports.mBestPosition.back().mUtcReported; } else { r.mLocation.mValid = false; } if (r.mLocation.mValid) { LOC_LOGV("getDebugReport - lat=%f lon=%f alt=%f speed=%f", r.mLocation.mLocation.latitude, r.mLocation.mLocation.longitude, r.mLocation.mLocation.altitude, r.mLocation.mLocation.speed); } // time block r.mTime.size = sizeof(r.mTime); if(!reports.mTimeAndClock.empty() && reports.mTimeAndClock.back().mTimeValid) { r.mTime.mValid = true; r.mTime.timeEstimate = (((int64_t)(reports.mTimeAndClock.back().mGpsWeek)*7 + GNSS_UTC_TIME_OFFSET)*24*60*60 - (int64_t)(reports.mTimeAndClock.back().mLeapSeconds))*1000ULL + (int64_t)(reports.mTimeAndClock.back().mGpsTowMs); if (reports.mTimeAndClock.back().mTimeUncNs > 0) { // TimeUncNs value is available r.mTime.timeUncertaintyNs = (float)(reports.mTimeAndClock.back().mLeapSecUnc)*1000.0f + (float)(reports.mTimeAndClock.back().mTimeUncNs); } else { // fall back to legacy TimeUnc r.mTime.timeUncertaintyNs = ((float)(reports.mTimeAndClock.back().mTimeUnc) + (float)(reports.mTimeAndClock.back().mLeapSecUnc))*1000.0f; } r.mTime.frequencyUncertaintyNsPerSec = (float)(reports.mTimeAndClock.back().mClockFreqBiasUnc); LOC_LOGV("getDebugReport - timeestimate=%" PRIu64 " unc=%f frequnc=%f", r.mTime.timeEstimate, r.mTime.timeUncertaintyNs, r.mTime.frequencyUncertaintyNsPerSec); } else { r.mTime.mValid = false; } // satellite info block convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_GPS, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_GLONASS, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_QZSS, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_BEIDOU, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_GALILEO, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_NAVIC, reports); LOC_LOGV("getDebugReport - satellite=%zu", r.mSatelliteInfo.size()); return true; } /* get AGC information from system status and fill it */ void GnssAdapter::getAgcInformation(GnssMeasurementsNotification& measurements, int msInWeek) { SystemStatus* systemstatus = getSystemStatus(); if (nullptr != systemstatus) { SystemStatusReports reports = {}; systemstatus->getReport(reports, true); if ((!reports.mRfAndParams.empty()) && (!reports.mTimeAndClock.empty()) && (abs(msInWeek - (int)reports.mTimeAndClock.back().mGpsTowMs) < 2000)) { for (size_t i = 0; i < measurements.count; i++) { switch (measurements.measurements[i].svType) { case GNSS_SV_TYPE_GPS: case GNSS_SV_TYPE_QZSS: measurements.measurements[i].agcLevelDb = reports.mRfAndParams.back().mAgcGps; measurements.measurements[i].flags |= GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT; break; case GNSS_SV_TYPE_GALILEO: measurements.measurements[i].agcLevelDb = reports.mRfAndParams.back().mAgcGal; measurements.measurements[i].flags |= GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT; break; case GNSS_SV_TYPE_GLONASS: measurements.measurements[i].agcLevelDb = reports.mRfAndParams.back().mAgcGlo; measurements.measurements[i].flags |= GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT; break; case GNSS_SV_TYPE_BEIDOU: measurements.measurements[i].agcLevelDb = reports.mRfAndParams.back().mAgcBds; measurements.measurements[i].flags |= GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT; break; case GNSS_SV_TYPE_SBAS: case GNSS_SV_TYPE_UNKNOWN: default: break; } } } } } /* get Data information from system status and fill it */ void GnssAdapter::getDataInformation(GnssDataNotification& data, int msInWeek) { SystemStatus* systemstatus = getSystemStatus(); LOC_LOGV("%s]: msInWeek=%d", __func__, msInWeek); if (nullptr != systemstatus) { SystemStatusReports reports = {}; systemstatus->getReport(reports, true); if ((!reports.mRfAndParams.empty()) && (!reports.mTimeAndClock.empty()) && (abs(msInWeek - (int)reports.mTimeAndClock.back().mGpsTowMs) < 2000)) { for (int sig = GNSS_LOC_SIGNAL_TYPE_GPS_L1CA; sig < GNSS_LOC_MAX_NUMBER_OF_SIGNAL_TYPES; sig++) { data.gnssDataMask[sig] = 0; data.jammerInd[sig] = 0.0; data.agc[sig] = 0.0; } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mAgcGps) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_GPS_L1CA] |= GNSS_LOC_DATA_AGC_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_GPS_L1CA] = reports.mRfAndParams.back().mAgcGps; data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_QZSS_L1CA] |= GNSS_LOC_DATA_AGC_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_QZSS_L1CA] = reports.mRfAndParams.back().mAgcGps; data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_SBAS_L1_CA] |= GNSS_LOC_DATA_AGC_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_SBAS_L1_CA] = reports.mRfAndParams.back().mAgcGps; } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mJammerGps) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_GPS_L1CA] |= GNSS_LOC_DATA_JAMMER_IND_BIT; data.jammerInd[GNSS_LOC_SIGNAL_TYPE_GPS_L1CA] = (double)reports.mRfAndParams.back().mJammerGps; data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_QZSS_L1CA] |= GNSS_LOC_DATA_JAMMER_IND_BIT; data.jammerInd[GNSS_LOC_SIGNAL_TYPE_QZSS_L1CA] = (double)reports.mRfAndParams.back().mJammerGps; data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_SBAS_L1_CA] |= GNSS_LOC_DATA_JAMMER_IND_BIT; data.jammerInd[GNSS_LOC_SIGNAL_TYPE_SBAS_L1_CA] = (double)reports.mRfAndParams.back().mJammerGps; } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mAgcGlo) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_GLONASS_G1] |= GNSS_LOC_DATA_AGC_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_GLONASS_G1] = reports.mRfAndParams.back().mAgcGlo; } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mJammerGlo) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_GLONASS_G1] |= GNSS_LOC_DATA_JAMMER_IND_BIT; data.jammerInd[GNSS_LOC_SIGNAL_TYPE_GLONASS_G1] = (double)reports.mRfAndParams.back().mJammerGlo; } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mAgcBds) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_BEIDOU_B1_I] |= GNSS_LOC_DATA_AGC_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_BEIDOU_B1_I] = reports.mRfAndParams.back().mAgcBds; } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mJammerBds) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_BEIDOU_B1_I] |= GNSS_LOC_DATA_JAMMER_IND_BIT; data.jammerInd[GNSS_LOC_SIGNAL_TYPE_BEIDOU_B1_I] = (double)reports.mRfAndParams.back().mJammerBds; } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mAgcGal) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_GALILEO_E1_C] |= GNSS_LOC_DATA_AGC_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_GALILEO_E1_C] = reports.mRfAndParams.back().mAgcGal; } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mJammerGal) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_GALILEO_E1_C] |= GNSS_LOC_DATA_JAMMER_IND_BIT; data.jammerInd[GNSS_LOC_SIGNAL_TYPE_GALILEO_E1_C] = (double)reports.mRfAndParams.back().mJammerGal; } } } } /* Callbacks registered with loc_net_iface library */ static void agpsOpenResultCb (bool isSuccess, AGpsExtType agpsType, const char* apn, AGpsBearerType bearerType, void* userDataPtr) { LOC_LOGD("%s]: ", __func__); if (userDataPtr == nullptr) { LOC_LOGE("%s]: userDataPtr is nullptr.", __func__); return; } if (apn == nullptr) { LOC_LOGE("%s]: apn is nullptr.", __func__); return; } GnssAdapter* adapter = (GnssAdapter*)userDataPtr; if (isSuccess) { adapter->dataConnOpenCommand(agpsType, apn, strlen(apn), bearerType); } else { adapter->dataConnFailedCommand(agpsType); } } static void agpsCloseResultCb (bool isSuccess, AGpsExtType agpsType, void* userDataPtr) { LOC_LOGD("%s]: ", __func__); if (userDataPtr == nullptr) { LOC_LOGE("%s]: userDataPtr is nullptr.", __func__); return; } GnssAdapter* adapter = (GnssAdapter*)userDataPtr; if (isSuccess) { adapter->dataConnClosedCommand(agpsType); } else { adapter->dataConnFailedCommand(agpsType); } } void GnssAdapter::saveGnssEnergyConsumedCallback(GnssEnergyConsumedCallback energyConsumedCb) { mGnssEnergyConsumedCb = energyConsumedCb; } void GnssAdapter::getGnssEnergyConsumedCommand(GnssEnergyConsumedCallback energyConsumedCb) { struct MsgGetGnssEnergyConsumed : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; GnssEnergyConsumedCallback mEnergyConsumedCb; inline MsgGetGnssEnergyConsumed(GnssAdapter& adapter, LocApiBase& api, GnssEnergyConsumedCallback energyConsumedCb) : LocMsg(), mAdapter(adapter), mApi(api), mEnergyConsumedCb(energyConsumedCb){} inline virtual void proc() const { mAdapter.saveGnssEnergyConsumedCallback(mEnergyConsumedCb); mApi.getGnssEnergyConsumed(); } }; sendMsg(new MsgGetGnssEnergyConsumed(*this, *mLocApi, energyConsumedCb)); } void GnssAdapter::nfwControlCommand(bool enable) { struct MsgControlNfwLocationAccess : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; bool mEnable; inline MsgControlNfwLocationAccess(GnssAdapter& adapter, LocApiBase& api, bool enable) : LocMsg(), mAdapter(adapter), mApi(api), mEnable(enable) {} inline virtual void proc() const { GnssConfigGpsLock gpsLock; gpsLock = ContextBase::mGps_conf.GPS_LOCK; if (mEnable) { gpsLock &= ~GNSS_CONFIG_GPS_LOCK_NI; } else { gpsLock |= GNSS_CONFIG_GPS_LOCK_NI; } ContextBase::mGps_conf.GPS_LOCK = gpsLock; mApi.sendMsg(new LocApiMsg([&mApi = mApi, gpsLock]() { mApi.setGpsLockSync((GnssConfigGpsLock)gpsLock); })); } }; if (mSupportNfwControl) { sendMsg(new MsgControlNfwLocationAccess(*this, *mLocApi, enable)); } else { LOC_LOGw("NFW control is not supported, do not use this for NFW"); } } /* ==== Eng Hub Proxy ================================================================= */ /* ======== UTILITIES ================================================================= */ void GnssAdapter::initEngHubProxyCommand() { LOC_LOGD("%s]: ", __func__); struct MsgInitEngHubProxy : public LocMsg { GnssAdapter* mAdapter; inline MsgInitEngHubProxy(GnssAdapter* adapter) : LocMsg(), mAdapter(adapter) {} inline virtual void proc() const { mAdapter->initEngHubProxy(); } }; sendMsg(new MsgInitEngHubProxy(this)); } bool GnssAdapter::initEngHubProxy() { static bool firstTime = true; static bool engHubLoadSuccessful = false; const char *error = nullptr; unsigned int processListLength = 0; loc_process_info_s_type* processInfoList = nullptr; do { // load eng hub only once if (firstTime == false) { break; } int rc = loc_read_process_conf(LOC_PATH_IZAT_CONF, &processListLength, &processInfoList); if (rc != 0) { LOC_LOGE("%s]: failed to parse conf file", __func__); break; } bool pluginDaemonEnabled = false; // go over the conf table to see whether any plugin daemon is enabled for (unsigned int i = 0; i < processListLength; i++) { if ((strncmp(processInfoList[i].name[0], PROCESS_NAME_ENGINE_SERVICE, strlen(PROCESS_NAME_ENGINE_SERVICE)) == 0) && (processInfoList[i].proc_status == ENABLED)) { pluginDaemonEnabled = true; break; } } // no plugin daemon is enabled for this platform, no need to load eng hub .so if (pluginDaemonEnabled == false) { break; } // load the engine hub .so, if the .so is not present // all EngHubProxyBase calls will turn into no-op. void *handle = nullptr; if ((handle = dlopen("libloc_eng_hub.so", RTLD_NOW)) == nullptr) { if ((error = dlerror()) != nullptr) { LOC_LOGE("%s]: libloc_eng_hub.so not found %s !", __func__, error); } break; } // prepare the callback functions // callback function for engine hub to report back position event GnssAdapterReportEnginePositionsEventCb reportPositionEventCb = [this](int count, EngineLocationInfo* locationArr) { // report from engine hub on behalf of PPE will be treated as fromUlp reportEnginePositionsEvent(count, locationArr); }; // callback function for engine hub to report back sv event GnssAdapterReportSvEventCb reportSvEventCb = [this](const GnssSvNotification& svNotify, bool fromEngineHub) { reportSvEvent(svNotify, fromEngineHub); }; // callback function for engine hub to request for complete aiding data GnssAdapterReqAidingDataCb reqAidingDataCb = [this] (const GnssAidingDataSvMask& svDataMask) { mLocApi->requestForAidingData(svDataMask); }; getEngHubProxyFn* getter = (getEngHubProxyFn*) dlsym(handle, "getEngHubProxy"); if(getter != nullptr) { EngineHubProxyBase* hubProxy = (*getter) (mMsgTask, mSystemStatus->getOsObserver(), reportPositionEventCb, reportSvEventCb, reqAidingDataCb); if (hubProxy != nullptr) { mEngHubProxy = hubProxy; engHubLoadSuccessful = true; } } else { LOC_LOGD("%s]: entered, did not find function", __func__); } LOC_LOGD("%s]: first time initialization %d, returned %d", __func__, firstTime, engHubLoadSuccessful); } while (0); if (processInfoList != nullptr) { free (processInfoList); processInfoList = nullptr; } firstTime = false; return engHubLoadSuccessful; }